集装箱回收----------------------------------------- 19 维护-----------------------------------------19 拆箱装运-------------------------------------------19 工程支持------------------------------------------- 19 搬运设备------------------------------------------- 19 命名法分配--------------------------- 20 国家库存编号--------------------------- 20 供应---------------------------20 库存管理--------------------------- 20 维护-------------------------------------------20 特殊储存和装载要求-------- 20 装载在作战舰艇和直接支援辅助舰艇中的单元----------------------------- 21 通信电子 (CE) 设备的定期检查----------------------------------------- 21 PHS6T 功能基线--------------------------- 21 里程碑零任务要素需求陈述--- 21 PHSST 分配基线--------------------------- 21 物流流分析--------------------------- 21 筛选现有设备----------------------- 21 为工程开发提出特定集装箱和搬运设备建议------------------------------ 22 PHS6T 开发规范---------------- 22 图纸例外----------------------- 22 可交付产品规范----------------------- 22 库存项目规范----------------------- 22 PHS&T 产品基准----------------------- 23 PHS6T 程序执行----------------------- 23 PHS6T 设备数据包----------------------- 23 包装数据-----------------------23 产品规范转换----------------------- 23 规范中的详细描述----------------------- 23 规范中的书面描述----------------------- 23 特殊过程-------------------------------24 材料安全数据-----------------------24 设备放行------------------------24 操作测试和评估支持------ 25 PHS6T 最终设备-----------------------25 维修零件-----------------------25 生产阶段-----------------------25 PHS6T 程序执行-----------------------25 额外的 PHSST 工程----------------------- 25 政府提供的设备 (GEE)------------ 25 整合点----------------------- 25 资产检查---------------------------- 25 合同期末剩余物--------------------------- 26 工具和测试设备------------------------- 26 可使用的多余或剩余材料--------- 26 可修复的多余或剩余材料----------- 26
总氯<0.05 mg/l <0.05 ppm fe,mn,h 2 s <0.01 mg/l <0.01 mg/l <0.01 ppm boron注意8 <1.0 mg/l <1.0 mg/l <1.0 ppm pH 4至11油&润滑油和油脂无检测到可检测的颗粒物注释9 ro透明的氧化剂,无透明的氧化剂,无探测的固定剂。实际性能可能会根据现场条件而有所不同。参考绞盘投影软件,以验证预期的产品水质以及电阻率,钠和二氧化硅性能保证了为设计条件提供的。要获得硼或其他保证,请联系威尔利亚。2。入口压力取决于产品和浓缩流的下游压力要求,反流或共流操作的选择以及堆栈压力下降。3。在名义流和25°C下。参考绞盘投影软件以验证设计条件。4。引用Winflows投影软件和E-Cell堆栈所有者手册,以验证设计条件的供水水规格。5。茶(ppm作为CACO 3) - 总可交换阴离子,这代表了进料水中所有阴离子的浓度,包括OH - - CO 2和SIO 2的贡献。winflows必须用于确认在特定应用程序的操作条件下可以接受饲料水茶。表值是在最小流量和最高温度下。6。1.0 ppm作为CACO 3馈电硬度极限仅适用于标准的反电流操作。允许的馈电水硬度在共流流动过程中作为CACO 3降至0.1 ppm。
射流冲击冷却被视为高功率电子设备热管理的绝佳选择。然而,它的缺点是高压降损失和远离射流区域的低局部传热系数。尽管据报道回流区是由于夹带而出现的,但是回流尺寸对热行为的影响尚不清楚。在这里,在数值研究中采用带有收敛环形通道的射流冲击散热器,以最大限度地减少微通道中冲击射流带来的不利冷却影响。可实现的 k − ε 湍流模型用于模拟热场和湍流流场(Re = 5,000 至 25,000)。研究发现,小尺度上不同的流动回流区是增强传热速率的原因。虽然在 Re 数较低时,收敛壁面射流冲击散热器的热性能高于其平板壁面散热器,但在 Re 数较高时,热性能结果有利于平板壁面射流冲击散热器。在 Re 数较高时,收敛通道中的流动再循环面积会缩小,因此与平板壁面射流散热器相比,收敛通道的热性能会下降。此外,研究发现,采用更陡的收敛通道会缩小流动再循环区域,导致 Re = 25,000 时压降降低高达 59%。本研究考察了不同 Re 数下流动再循环对射流冲击收敛环形散热器热工水力性能的影响。
集装箱回收-------------------------- 19 维护---------------------------19 拆箱装运---------------------------19 工程支持--------------------------- 19 搬运设备--------------------------- 19 命名分配-------------------------- 20 国家库存编号--------------------------- 20 供应---------------------------20 库存管理--------------------------- 20 维护---------------------------20 特殊储存和装载要求-------- 20 装载在作战舰艇和直接支援辅助舰艇中的单元--------------------------- 21 通信电子 (CE) 设备的定期检查--------------------------- 21 PHS6T 功能基线--------------------------- 21 里程碑零任务要素需求陈述--- 21 PHSST 分配基线--------------------------- 21 物流流分析--------------------------- 21 筛选现有设备-------------------- 21 为工程开发提出具体的集装箱和搬运设备建议--------------- 22 PHS6T 开发规格---------------- 22 图纸例外情况---------------------- 22 可交付产品规格----------------------- 22 库存项目规格----------------------- 22 PHS&T 产品基准----------------------- 23 PHS6T 程序执行----------------------- 23 PHS6T 设备数据包----------------------- 23 包装数据-----------------------23 产品规格转换----------------------- 23 规格中的详细描述----------------------- 23 规格中的书面描述---------- 23 特殊过程-----------------------24 材料安全数据-----------------------------24 设备放行-----------------------24 操作测试和评估支持------ 25 PHS6T 最终设备-----------------------25 维修零件-----------------------25 生产阶段-----------------------25 PHS6T 程序执行-----------------------25 额外的 PHSST 工程----------------------- 25 政府提供的设备 (GEE)------------ 25 整合点----------------------- 25 检查资产---------------------------- 25 合同期末剩余物-------------------------- 26 工具和测试设备------------------------- 26 可使用的多余或剩余材料--------- 26 可修复的多余或剩余材料---------- 26
目标是确定Thevenin和Norton形式中的开路输出电压。由于电路打开时没有电流流,因此源电压出现在整个负载上。这意味着以Thevenin形式的开路输出电压仅仅是源电压。要以诺顿的形式找到开路输出电压,我们可以使用欧姆定律来计算等效电阻,然后将其应用于源电压。其余的文本似乎是Adel S. Sedra和Kenneth C. Smith的出版物“微电子电路”的版权通知和确认。它还包含第1-16章的练习解决方案,其中包括与微电子电路有关的问题和答案。最后,有一些特定的练习(例如ex:1-1)当输出端子打开或短路以及其他涉及电阻器,电容器和电压源的计算时,涉及计算开路输出电压。在此处给出的文字:x 35 cm/s'=)lpvt“'a。:12.4 cm2/s j> nd aqu :(。1._!!,/! + jl!c ..),n v equationl .. 5u(,l,n,〜1。,lo“'x 1.6 x i()x [v w〜-'----------' - 等式1。52 x J'x 5 19:>> np nn i :::: w·_ ;;;''' i,(e \'/\'.. 1· - i)ly,l,。,•。r:quatjon 1〜。。; -3(。1 N1)。; v,ex:l。 36 ::。a,1,v“ w /l 1。< /div>()〜x x•j 1()。1.6 x 10-IQ 1.66>:10 11(_!_--- + ___ 1 _,)(0.814- 0.605)ern!(} ix 10 1“ 0.166 ij.rll r;:。〜-〜- ~~ - a .j2〜sqn 0 V 0 kx:1。37 [“” V〜IN .- 〜Ampk n〜。> 1。2;>'f。,,,\ 1,ii,11。:10' /em·和V1 1••,。“ < /div>~~“'”〜------,〜-〜“” t〜'(〜;•;〜)v,。+ vi?io“ tnn'll-?> - :: ll)'')'10“'(,j)l {u〜ign q1)
摘要。心脏左心室(LV)内部的涡流血流结构在从心脏到器官的有效血液供应中起着至关重要的作用。最近的医学成像和计算技术进步为超声心动图和心脏MRI中的血流可视化工具带来了。但是,由于流动非常不稳定和动荡,因此仍然很少有工具可以精确捕获涡流结构。由于涡流流量力对心脏病中心脏功能的预后的重要性,因此在医学科学中识别涡流流结构而没有歧义的情况。在本文中,我们提出了一种数学方法来描述带有符号图表达式的二维(2D)流的拓扑特征,称为COT表示。由于心脏收缩并在短时间内反复放松,因此沿该运动边界的瞬时血流模式将作为源/水槽结构出现。这意味着该流量无法满足2D流的前面拓扑分类理论中假定的滑移条件[T. Sakajo和T. Yokoyama,Ima J. Appl。数学。,83(2018),pp。380--411],[T。 Sakajo和Y. Yokoyama,离散数学。 算法应用,15(2023),2250143]。 因此,我们通过引入一个名为n-划合的SS addle的简化奇异点,建立了一种新的拓扑分类理论和一种适用于具有运动边界条件的血流的算法。380--411],[T。 Sakajo和Y. Yokoyama,离散数学。算法应用,15(2023),2250143]。因此,我们通过引入一个名为n-划合的SS addle的简化奇异点,建立了一种新的拓扑分类理论和一种适用于具有运动边界条件的血流的算法。将理论应用于可视化工具获得的2D血流模式,我们成功地将涡流结构识别为拓扑涡流结构。这实现了一种新的进化处理,表征了健康的血流模式以及患病心脏中效率低下的模式。
F01:未来前沿 - 功能材料与设备的创新 - 一般研讨会主题 F 教授博士安东尼奥·安科纳(西大学),教授、博士Carsten Gachot(维也纳技术大学),教授、博士。 Andrés Fabián Lasagni(德累斯顿工业大学)F02:可持续能源应用的高性能材料 Daniel Benitez(德国航空航天中心 (DLR))、Mathieu Boidot(原子能和替代能源委员会 (CEA))、Dr.-Ing. Frederike Brasche(亚琛工业大学),教授、博士。能。 Ulrich Krupp(亚琛工业大学)、Fernando Santos(AZTERLAN Aliendalde Auzunea nº6)F03:蜂窝材料和机械超材料 Angelika Gedsun(弗莱堡大学)、Max Mylo(弗莱堡大学)、Dr. Viacheslav Slesarenko(弗莱堡大学),教授、博士Ulrike GK Wegst(达特茅斯学院),博士尹开阳 (弗莱堡大学) F04:表面处理的光子技术教授安东尼奥·安科纳(巴里大学),博士Robert Baumann(德累斯顿工业大学),教授、博士。 Andrés Fabián Lasagni(德累斯顿工业大学),博士Gediminas Raciukaitis(物理科学与技术中心 FTMC),教授、博士Gert-willem Römer(特温特大学),博士Marcos Soldera(德累斯顿工业大学),博士Bogdan Voisiat(德累斯顿工业大学),工学博士Christoph Zwahr(德累斯顿工业大学)F05:多功能高熵合金教授Oliver Gutfleisch(达姆施塔特工业大学),工学博士韩流流(德国马克斯普朗克铁研究所),教授、博士Alfred Ludwig(波鸿鲁尔大学)F06:压电氧化物教授、博士Holger Fritze(克劳斯塔尔工业大学),博士Jutta Schwarzkopf(莱布尼茨晶体生长研究所)F07:数据驱动和机器学习辅助材料研究博士Leopoldo Molina-Luna(达姆施塔特工业大学),教授、博士徐百祥(达姆施塔特工业大学),教授、博士张宏斌 (达姆施塔特工业大学)
添加剂制造,通常称为三维印刷(3D打印),正成为一种越来越流行的方法,用于制造使用传统制造工艺制造的组件。它可以直接从3D设计中启用复杂零件的一步制造。3D打印零件现在定期用于医疗,航空航天,汽车,能源,海洋和消费产品行业[1]。印刷零件的示例包括患者特定的,定制的医疗植入物;航空发动机组件;具有复杂,复杂的特征和内部渠道的零件;晶格结构;以及具有特异性化学成分,微观结构和特性的材料[2]。这些部分是使用金属合金,聚合物,陶瓷和复合材料打印的。但是,金属和金属合金的打印是开发最快的场地,因为其应用,需求和打印独特的功能部分的能力。取决于零件的材料,几何形状和复杂性,可以采用几个3D打印过程[2]。例如,通常使用用于打印金属零件,粉末床融合和定向能量沉积过程。电源粉末的薄层使用高能激光,电子束或电弧熔化,该激光器,电子束或电弧在固体后形成零件。同样,行业中使用了几个过程来打印带有聚合物,陶瓷和复合材料的零件。3D打印过程的几个科学和技术方面的理解很差[1]。例如,金属印刷涉及快速熔化,传热,液态金属的对流流,固化和冷却,所有这些都会影响零件的几何形状,微结构和特性[2]。取决于打印过程,材料和进程条件,冷却速率,温度梯度和固化生长速率可能会发生显着变化,这可以产生各种谷物结构,形态质量和纹理。打印的部分通常患有缺陷,例如孔隙率和破裂,从而降低了组件的机械性能,质量和可维护性。此外,过程计划和控制以提高生产率而不影响零件质量是一项艰巨的任务。所讨论的所有科学和技术问题都会影响印刷零件的成本和市场渗透。正在全球进行研发项目,以更好地了解3D打印的科学和技术,以以具有成本效益且较稳定的方式制作高质量的零件。本期特刊包括对全球领先组织的3D印刷的当代,独特和有影响力的研究。
西里西亚技术大学电气工程学院(1),西里西亚技术大学,电动驱动器和机器人技术系(2),orcid:1。0000-0002-6185-7935; 2。无,3。0000-0002-2508-1893,4。0000-0002-4279-0472 doi:10.15199/48.2024.10.05确定高温超导体磁带1G摘要中临界电流和C的角度依赖性。本文介绍了第一代高温率超导体磁带(HTS)中临界电流的角度依赖性的理论和角度依赖性。研究重点是分析磁场值和方向对临界电流的影响。这项工作还描述了使用Halbach配置中的Neododmium Magnets进行特殊设计的测试台的构建和操作,该磁铁可实现HTS磁带的准确测量和表征。研究结果确认了符合KIM模型,并允许开发关键电流密度模型,该模型可用于进一步的计算机模拟。摘要。本文介绍了第一代临界电流的角度依赖性的疗法和测量角度依赖性。研究着重于磁场对临界电流的价值和方向的影响。本文还描述了使用Halbach配置中使用neododmium磁铁设计的特殊设计站的构建和操作,该测试站允许对HTS磁带进行精确的措施和表征。结果证实了KIM模型的一致性,并有助于开发关键的当前Delsity模型,该模型可用于进一步的计算机模拟。(在高体质超导胶带中确定临界电流IC的角度依赖性1G)关键字:临界电流,高温超导体磁带,bisccco,anisotropia。关键字:临界电流,高电流超导胶带,Biscco,各向异性。高温入院超导录像带(HTS)用于许多电力行业应用,例如变压器,电力限制器和电缆[1-2]。设计这些设备中的每一个都需要了解外部因素对HTS磁带参数的影响。尤其涉及临界场的影响,例如温度-T c,磁场-b c和临界电流密度-JC。使用HTS磁带设计超导体设备的关键参数是确定适当的工作点。这是由于可能在许多限制的同时最大程度地使用超导材料。对增加设备功率密度的可能性的限制之一是临界电流的值以及HTS磁带相对于外场线的位置的影响。这是由于所有设备在某些条件下运行的事实,并且有必要考虑到您自己的领域与运输电流流有关的影响,而且还要考虑到所有外部场。临界电流的值取决于磁感应的值(B)和相对于HTS胶带的磁场力线的方向。您可以同时使用Kim(1)和各向异性磁铁(2)Magneto模型来确定这些依赖性[3-4]。
干旱是世界各地自然灾难的主要原因(Bekele等人2019)。气候变化对几个因素有重大影响,包括水文周期,生物多样性,领土生态学,水资源,环境,农业和粮食安全以及人类健康(Gupta 2015)。降雨量是主要因素之一,它对农业,能源平衡,水力发电,工业和粮食安全的水可用性的时间和空间模式产生了影响(Ayehu等人2018)。科学证据现在表明,随着地球表面温室气体浓度的上升,地球大气的平均温度将继续升高。虽然预计温度会始终如一地升高,但根据各种气候模型和排放场景,降水表现出可变的结果(IPCC 2014; Tessema等。2021)。中纬度和亚热带干燥区域有望在RCP8.5场景下降水下降,而高纬度,赤道pacifife,赤道和湿区的降水有望增加(Sesana等人。2019)。例如,IPCC(2021)指出,除非CO 2和其他温室气体排放的显着减少,否则在21世纪将超过1.5和2°C的变暖。21世纪非洲的预期温度高于平均全球温度(IPCC 2013)。世界不同等地受到气候变化的影响(Thornton等人2008; Kotir 2011)。 2017)。2008; Kotir 2011)。2017)。非洲是气候变化最大的大陆(Collier等人2008);特别是,撒哈拉以南非洲是最脆弱的地区,因为使用雨水农业种植了所有农作物中的96%,这可能会加剧问题(Serdeczny等人。 物理和经济缺乏的缺乏对非洲大角(GHA)具有复杂的影响,经常导致严重的水和粮食短缺(Nicholson 2014; Awange等人 2016)。 该地区的未来水稀缺问题可能会因该地区的迅速扩大和高度不可预测的气候而加剧(Hirpa等人。 2019)。 在东非,来自各种GCM场景的降雨揭示了不确定的幅度和趋势(Getahun等人。 2020)。 例如,在接下来的几年中,尼罗河流域的流流量有望减少(Haile等人 2017),还有其他研究发现(Worqlul等人 2018)表明,尼罗河流域的流流量估计在未来几十年中会增加。 Haile等人报道。 (2017)有力的证据表明,埃塞俄比亚的气候变化在过去50年中发生了变化。 在2007年气候变化国家适应计划(NAPA)下,前埃塞俄比亚国家气象局(NMA)确定国家平均年度年度温度在1960年至2006年之间。。。 这一数字表明,在过去的46年中,每十年增加0.28°C。 根据这项研究的发现,在主要潮湿季节中最引人注目的是,当增长最为明显时。2008);特别是,撒哈拉以南非洲是最脆弱的地区,因为使用雨水农业种植了所有农作物中的96%,这可能会加剧问题(Serdeczny等人。物理和经济缺乏的缺乏对非洲大角(GHA)具有复杂的影响,经常导致严重的水和粮食短缺(Nicholson 2014; Awange等人2016)。该地区的未来水稀缺问题可能会因该地区的迅速扩大和高度不可预测的气候而加剧(Hirpa等人。2019)。在东非,来自各种GCM场景的降雨揭示了不确定的幅度和趋势(Getahun等人。2020)。例如,在接下来的几年中,尼罗河流域的流流量有望减少(Haile等人2017),还有其他研究发现(Worqlul等人2018)表明,尼罗河流域的流流量估计在未来几十年中会增加。Haile等人报道。 (2017)有力的证据表明,埃塞俄比亚的气候变化在过去50年中发生了变化。 在2007年气候变化国家适应计划(NAPA)下,前埃塞俄比亚国家气象局(NMA)确定国家平均年度年度温度在1960年至2006年之间。。Haile等人报道。(2017)有力的证据表明,埃塞俄比亚的气候变化在过去50年中发生了变化。在2007年气候变化国家适应计划(NAPA)下,前埃塞俄比亚国家气象局(NMA)确定国家平均年度年度温度在1960年至2006年之间。这一数字表明,在过去的46年中,每十年增加0.28°C。根据这项研究的发现,在主要潮湿季节中最引人注目的是,当增长最为明显时。粗略的全球气候模型(GCM)决议无法捕获小规模的降雨模式,GCM和RCM降雨预测的高度不确定性,以及使用东非的测量流流缺乏模型验证,所有的水都具有水力影响研究(Otieno and Anyah 2013; Shiferaw eyh and Anyah and Anyah and any Anyah and anyah and anyah and y. shiferaw et al.2018; Endris等。2019)。一般气候模型(GCM)(CMIP; Chen等人。2022)。广泛应用缩小的GCM由于对潜在的未来气候场景的准确和信任而获得了受欢迎程度(Bhatta等人。2019; Bermúdez等。2020; Touseef等。2020; Ji等。2021)。不同气候模型的偏见和内部变异性可能会产生对未来Climeate的完全不同的投影。结果,为了更好地表征结构不确定性并改善气候预测,首选气候模型的集合而不是单个模型(Gaur等人。2021)。在埃塞俄比亚的12河盆地中,Awash River盆地(ARB)是最脆弱和广泛的剥削(Tadese等人2019)。增加人口,定居点,加强农业实践,高地侵蚀和污染物都导致了ARB淡水供应量的下降(Bekele等人2019)。由于多种原因,选择了Kessem流域来研究气候变化对流流的影响。Bekele等。首先,凯塞姆河是奥瓦斯河的一条小支流,为下游的用水使用者提供了更大的流动。第二,在凯西姆流域的下游地区,计划每年有一个25,000公顷的政府拥有的灌溉项目,每年生产500,000吨糖(Hailu 2020)。第三,流域是许多人的家园,他们的生计受到潜在的雨季和气候变化下降的负面影响(CSA 2011)。使用代表性浓度途径(RCP)在ARB的不同子囊中研究了气候变化(例如2019; Daba&You 2020; Getahun等。2020)。这些研究的预测表明,气候变化对ARB的流流动变化具有很大的影响。 但是,气候变化方案随着时间而变化。 目前,共享的社会经济道路(SSP)情景是根据全球发展开发的,导致缓解和适应气候变化的不同挑战(O'Neill等人。 2017)。表明,气候变化对ARB的流流动变化具有很大的影响。但是,气候变化方案随着时间而变化。目前,共享的社会经济道路(SSP)情景是根据全球发展开发的,导致缓解和适应气候变化的不同挑战(O'Neill等人。2017)。