i ˆγi。基本要求是,涉及量子点电荷以及感兴趣的主要产物(保守的量子点)的局部奇偶校验ˆπ,并且合并平等的两个特征空间ˆπ产生了可区分的测量信号。我们发现量子读数可能必须依靠测量量子点接触电流的噪声相关性。平均电流仅针对细胞的参数或在存在松弛过程的情况下瞬时编码Qubit读数。我们还讨论了相应的测量时间和分解时间,并考虑了对测量方案有害的残留主要杂交杂交等过程。最后,我们强调的是,基本机制(我们称为对称性保护的读数)是相当一般的,对Majorana和非Majorana系统具有进一步的影响。
原则上,进入 HF 通道的单端输入信号通过输入端的反相门被分解成差分信号。下面的电容电阻网络将信号分解成瞬态脉冲,然后由比较器将其转换为 CMOS 电平。比较器输入端的瞬态脉冲可以高于或低于共模电压 VREF,具体取决于输入位是从 0 变为 1 还是从 1 变为 0。比较器阈值根据预期的位转换进行调整。HF 通道比较器输出端的决策逻辑 (DCL) 测量信号瞬态之间的持续时间。如果两个连续瞬态之间的持续时间超过某个时间限制(例如低频信号的情况),DCL 会强制输出多路复用器从高频切换到低频通道。
水下电磁信号在导航、传感和通信方面有一系列实际应用。短程导航系统可以基于电磁传播中看到的信号幅度梯度。对于信标应用,声纳系统必须使用相位信息来感测波前方向,并受到多径效应和压力梯度的影响。基于电磁信号的 UUV 导航系统将测量信号强度的增加,作为对朝向信标的移动的直接响应,这将实现非常简单、强大的控制回路。分布式电缆可以设计为沿其长度辐射电磁信号。这种类型的分布式换能器在声学领域没有等效物。电缆可以提供短程导航并减少移动通信所需的范围。这种布置允许实施“有轨电车线”,该线可由 UUV 跟踪,同时允许定期偏移。连续的电车线在 UUV 返回时很容易被拦截。
电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
为了部署基于神经网络的状态分类,我们使用了开源 PyTorch 库。21 该库面向计算机视觉和自然语言处理,包括实现深度神经网络的能力,并包含用于在图形处理单元 (GPU) 上进行数据处理的内置功能。GPU 集成使我们的管道足够快,可以执行即时数据分类,而无需将原始测量信号传输到硬盘驱动器。除其他优点外,它还允许实时监控读出分配保真度。由于神经网络的初始训练需要几分钟的时间,因此随后的网络权重重新训练需要几秒钟,并允许读出分配保真度返回到最佳值。更重要的是,本研究中使用的卷积神经网络可以设计和训练成能够适应某些实验参数漂移的方式。具体而言,我们提出了一种策略来消除由微波发电设备引起的局部相对相位漂移对读出分配保真度的影响。在我们的实验中,我们使用了电路量子电动力学平台的原始部分:耦合到读出腔的传输器。
使用微电极阵列进行细胞外记录 ...................................................................................................................................................... 7 电极、轨道和绝缘层 ................................................................................................................................................................ 9 电极类型和布局 ...................................................................................................................................................................... 9 标准 MEA ...................................................................................................................................................................... 12 高密度 MEA:60HDMEA ...................................................................................................................................................... 13 H EXA MEA:60H EXA MEA40/10 ............................................................................................................................................. 14 薄 MEA:60T HIN MEA ............................................................................................................................................................. 15 透明 MEA ............................................................................................................................................................................. 16 三维 MEA:60-3DMEA 和120-3DMEA ........................................................................................................... 17 E CO MEA:60E CO MEA ........................................................................................................................................... 18 穿孔 MEA:60 P MEA ................................................................................................................................................ 19 穿孔 MEA,用于 MEA2100-32-S 系统和 USB-MEA32-STIM4-S 系统 ............................................................................. 20 带 6 孔的 MEA:60-6 孔 MEA ............................................................................................................................................. 21 256MEA,用于 MEA2100-256- 和 USB-MEA256-S 系统 ............................................................................................. 23 带 9 个孔的 MEA,用于 MEA2100-256 和 USB-MEA256-S 系统 ............................................................................................. 24 120MEA,用于 MEA2100-120-S 系统 ......................................................................................................................... 25 120MEA1000-1500/30 I RT I,用于 MEA2100-120-S 系统 ........................................................................................................................ 26 四象限测量仪: 60-4QMEA1000 ...................................................................................................................................... 27 方形测量仪: 60S 方形测量仪 ......................................................................................................................................... 28 PEDOT-CNT 测量仪: 60PEDOT 测量仪......................................................................................................................................... 29 柔性测量仪 ............................................................................................................................................................................. 30 测量信号发生器: 60MEA-SG ......................................................................................................................................................... 34
摘要 脑磁图和脑电图 (MEG/EEG) 以毫秒分辨率非侵入式记录人类大脑活动,提供健康和疾病状态的可靠标记。将这些宏观信号与底层细胞和电路级发生器联系起来是一种限制,它限制了使用 MEG/EEG 揭示信息处理的新原理或将研究结果转化为神经病理学的新疗法。为了解决这个问题,我们构建了人类新皮质神经求解器 (HNN,https://hnn.brown.edu) 软件。HNN 有一个图形用户界面,旨在帮助研究人员和临床医生解释 MEG/EEG 的神经起源。HNN 的核心是一个新皮质电路模型,它解释了产生 MEG/EEG 的电流的生物物理起源。数据可以直接与模拟信号和参数进行比较,这些模拟信号和参数易于操纵,以开发/测试信号起源的假设。教程教用户模拟常见的测量信号,包括事件相关电位和脑节律。 HNN 跨尺度关联信号的能力使其成为转化神经科学研究的独特工具。
研究项目:测量问题和量子到经典的转变是自量子理论出现以来的主要概念问题,并且自近年来量子技术的发展以来已成为核心的实际问题。退相干的物理学源自系统与其环境之间的纠缠,它为深入理解这些问题奠定了理论基础。然而,尽管取得了许多成功,量子到经典的问题仍然没有完全阐明。传统的退相干方法中缺少的一个核心要素是研究观察者本身的物理学,而不仅仅是系统的物理学,以便了解配备特定资源的观察者网络如何重建共同的经典图像(如果存在的话)。Zurek 关于量子达尔文主义的工作强调了这个问题,其中量子信息理论的工具占主导地位。然而,这些想法仍处于起步阶段,需要工具来评估经典图像的存在和观察者网络的重建能力。该项目旨在构建一个基于资源的通用量子信息框架,使我们能够精确分析经典描述的出现和重建问题。这项工作的具体目标是通过研究测量信号来检验这些一般思想。本项目将解决以下问题:
对于实际测量,我们使用了图1所示的设置。它由:(i)控制信号生成和数据采集的笔记本计算机; (ii)带有集成的任意波形发生器的USB示波器(TIEPIE HANDYSCOPE HS5-540)。将从神经刺激器记录的波形发送到任意波形发生器,并使用示波器从(iii)拾取测量信号; (iii)一个测量前端包含: - 将刺激脉冲应用于电极和组织的电压控制的电流源 - 一种测量差分放大器,该放大器测量了电极和组织的电压, - 一种差分放大器,可测量刺激电流的电压降低,以使电阻跨传感电阻器[8]; (iv)双极同轴脑刺激电极(Inomed BCS 45mm 30°)连接到电压控制电流源。电极是带有未绝缘外导体的开放式同轴探针。它的末端具有30°弯曲,长45毫米。电缆长度为3 m。由于其长度,它产生了不必要的寄生能力。如果导体只是略有非圆形[5],则会发生这种现象。补偿电极阻抗时,需要考虑这一点。但是,在本文的背景下,呈现原则的证明,这可以忽略不计。