1 简介 4 2 特性 5 3 开发环境 8 3.1 系统环境 8 3.2 开发选项 8 3.2.1 CMSIS 包 8 3.2.3 MM IoT SDK 8 3.2.4 PlatformIO + MM IoT SDK 9 4 入门 10 4.1 默认跳线配置 11 4.2 AP 设备设置 12 4.2.1 更改信道、带宽、DTIM 周期 16 4.3 软件示例 17 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 18 5 软件开发 21 5.1 安装 CMSIS 包 21 5.2 构建和运行示例应用程序 24 5.2.1 UART 输出 30 5.3 更改示例应用程序 31 5.4 更改示例配置 33 5.5 在 SPI 和 SDIO 之间切换 34 5.6 更改网络堆栈38 6 硬件布局和配置 40 6.1 电源选择 40 6.2 使用外部调试器/编程器 41 6.3 更改 VFEM 电压 42 6.4 在 SDIO 和 SPI 之间切换 43 6.5 在 SMA 和 U.FL 连接器之间切换 44 6.6 断开传感器 45 7 功耗测量 46 7.1 功耗测量点 46 7.1.1 总体结构 46 7.1.2 HaLow 和 VFEM 47 7.1.3 整个系统功耗 48 7.2 功耗测量程序 49
1 简介 4 2 特性 5 3 开发环境 8 3.1 系统环境 8 3.2 开发选项 8 3.2.1 CMSIS 包 8 3.2.3 MM IoT SDK 8 3.2.4 PlatformIO + MM IoT SDK 9 4 入门 10 4.1 默认跳线配置 11 4.2 AP 设备设置 12 4.2.1 更改信道、带宽、DTIM 周期 16 4.3 软件示例 17 4.4 查看 MM6108-EKH05 演示 HTTP 服务器 18 5 软件开发 21 5.1 安装 CMSIS 包 21 5.2 构建和运行示例应用程序 24 5.2.1 UART 输出 30 5.3 更改示例应用程序 31 5.4 更改示例配置 33 5.5 在 SPI 和 SDIO 之间切换 34 5.6 更改网络堆栈38 6 硬件布局和配置 40 6.1 电源选择 40 6.2 使用外部调试器/编程器 41 6.3 更改 VFEM 电压 42 6.4 在 SDIO 和 SPI 之间切换 43 6.5 在 SMA 和 U.FL 连接器之间切换 44 6.6 断开传感器 45 7 功耗测量 46 7.1 功耗测量点 46 7.1.1 总体结构 46 7.1.2 HaLow 和 VFEM 47 7.1.3 整个系统功耗 48 7.2 功耗测量程序 49
在此报告期间,课程 ALR32470 的培训负荷达到峰值,达到 285 名学生。在 3/61 和 4/61 财政季度,平均培训负荷为 260 名学生。1961 年 2 月,在美国空军总部举行了一次会议,审查了即将到来的 1962、63 和 64 日历年的培训要求和培训理念。会议决定开始计划修订精密测量设备培训。审查了特殊培训和现场培训团队的可能要求。确定这一时期的未来培训需求将趋于平稳,每年需要 200 到 250 名 324X0 人员来弥补职业领域的人员流失。会议还指出,应该对培训计划进行改革,让受过培训的技术人员牢牢理解计量学原理。这将课程的培训理念从设备导向课程转变为原理导向课程。 1961 年 4 月在 MOAMA 举行的美国空军校准委员会年度会议和 1961 年 5 月举行的 SAC PMEL 主管年度会议进一步证实并接受了这种培训理念变化的必要性。这一变化主要基于增加新的、更复杂的测量标准,以及与更复杂的武器系统相关的计算测量程序的预计增加。课程人员准备了一份提议
涉及核或辐射紧急情况的个人的医疗管理需要经过专门培训的人员。从以往事件中吸取的教训表明,如果要有效应对,照顾这些人需要一支由多学科医疗保健专业人员组成的团队。所有提供医疗辐射服务(例如放射科、放射治疗、核医学)的医院都有医学物理学家,他们是临床团队的一部分,特别负责正确安全地应用电离辐射。在应急和准备团队中使用这批辐射防护专家是一种良好的医疗实践。在医院工作的临床医学物理学家对辐射剂量测定、剂量重建和剂量测量程序有着深入的了解。他们是一个独特的专业群体,经过适当的培训,可以为应急准备和响应活动提供有效的支持。本出版物的一些章节是在国际原子能机构核安全行动计划下由日本政府资助的 NA/21 项目下与国际医学物理组织合作开发的。本出版物已得到美国医学物理学家协会、欧洲核医学协会、国际放射病理学协会、国际红十字会和红新月会联合会、国际医学物理学组织和拉丁美洲核医学和生物学学会协会的认可。负责本出版物的国际原子能机构官员是事故和应急中心的 ED Herrera Reyes 以及人类健康司的 T. Berris 和 A. Meghzifene。
摘要:环境保护的主要任务之一是监测海岸因气候变化和人为压力而产生的负面影响。遥感技术经常用于影响评估研究。地形和水深测量程序被视为单独的测量方法,而将沿海区域分析与水下影响相结合的方法很少用于岩土分析。本研究对用于沿海监测的水深测量机载系统进行了评估,同时考虑了环境条件并与其他监测方法进行了比较。测试是在波罗的海的一个区域进行的,尽管监测成功,但沿海退化仍在继续。该技术能够确定沿海悬崖侵蚀的威胁(基于岩土分析)。据报道,浅水深度对水深光探测和测距 (LiDAR) 来说是一个挑战,因为很难将表面、水柱和底部反射相互分离。通过描述所使用的分类方法克服了这一挑战,即最适合点云处理的 CANUPO 分类方法。本研究提出了一种识别自然灾害的创新方法,即结合沿海特征与水下因素的分析。本文的主要目标是评估在波罗的海使用水深扫描来确定导致海岸侵蚀的因素的适用性。此外,还进行了岩土工程分析,考虑到水下的几何地面变化。这是第一项使用沿海监测方法的研究,将岩土工程计算与遥感数据相结合。这项跨学科的科学研究可以提高对环境过程的认识。
抽象的质子 - 普罗氏素碰撞数据由Atlas检测器在2011年以7 TEV为单位的质量能量记录,已用于改善W -Boson质量的测定,并在LHC处对W -Boson宽度进行了首次测量。最近对质子Parton分布函数的拟合量纳入了测量程序中,并使用改进的统计方法来提高测量精度。W -Boson质量的测量结果得出的值为M W = 80,366。5±9。 8(stat。) ±12。 5(Syst。) mev = 80,366。 5±15。 9 MeV,宽度为W = 2202±32(Stat。) ±34(Syst。) mev = 2202±47 Mev。 第一个不确定性组成部分是实用的,第二个不确定性成分对应于实验和物理模型的系统不确定性。 这两个结果都与从拟合到电cision数据的期望一致。 M W的当前测量与使用相同数据进行的先前测量相兼容并取代。5±9。8(stat。)±12。5(Syst。)mev = 80,366。5±15。9 MeV,宽度为W = 2202±32(Stat。)±34(Syst。)mev = 2202±47 Mev。第一个不确定性组成部分是实用的,第二个不确定性成分对应于实验和物理模型的系统不确定性。这两个结果都与从拟合到电cision数据的期望一致。M W的当前测量与使用相同数据进行的先前测量相兼容并取代。
当分析从地面(例如固定摄像站)或地面以上(例如无人机、飞机或卫星)在同一位置收集的图像的时间序列时,没有必要对所有帧进行地理配准。与摄影测量光束法区域网平差一样,GCP 是在整个图像块的较小子集上测量的,而其他 GCP 则在它们之间和相对于它进行配准。如果使用间接地理配准技术,则使用已知 GCP 手动对一幅图像进行地理编码(该图像通常称为“主”或“参考”图像),然后手动或自动将该系列的所有其他图像与其配准。另一方面,当使用直接地理配准技术时,所有图像都已进行地理配准,只需要几个 GCP 来纠正一些残留偏差。不幸的是,这种方法不适用于任何类型的应用,例如近距离摄影测量(Luhmann 等人2014 )。在其他情况下,它可能仅提供近似地理编码,用于实例化其他地理参考技术。这是使用无人机记录的大多数摄影测量块的情况(Colomina 和 Molina 2014;Granshaw 2018a)或用于分析卫星图像,其中直接地理编码不够准确。当需要间接地理参考方法时,假设总是需要一些外部约束,则仅在(小)图像子集上测量 GCP 然后将其余数据联合注册的选项对于减少处理时间和限制操作员工作量确实具有战略意义。因此,近年来,已经开发了几种自动化方法来实现这一目的。米兰理工大学建筑、建筑环境和建筑工程系 (DABC) 通过在通用框架内引导不同类型图像的配准过程,为这一主题做出了贡献。这可以称为运动结构摄影测量程序,将在下一节中讨论。
举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR