基于激光的选择性多步光电离以及随后收集所需同位素是一种非常有利可图的分离技术,特别是对于医用同位素而言,其典型产品需求量在几毫克到一克的范围内。为了获得高纯度的产品,具有窄线宽(最好是 SLM)的可调激光器必不可少,特别是在同位素系统表现出重叠光谱的情况下。此外,可调 SLM 激光器非常适合用于此类同位素的选择性研究以及选择性光电离方案中涉及的原子能级和跃迁的精确光谱表征。然而,适用于高分辨率光谱的市售 SLM 可调激光器过于昂贵。此外,广泛用于这些应用的传统窄带液体染料激光器受到其波长可调性的限制。对于给定染料,这些染料激光器的调谐范围通常为 25-30nm,因此需要多种染料来覆盖可见光区域的宽光谱范围,这很麻烦且耗时。例如,使用
抽象目的 - 本文旨在介绍建立社会fr€ohlich冷凝物的基本假设,并吸引其他研究人员(从物理和社会政治科学)的注意力,以实现高度能量社会的稳定性和秩序保存建模的问题,并与高温的社会能量沐浴相结合。设计/方法论/方法 - 社会fr ichlich凝结的模型及其分析基于量子热力学和田间理论的数学形式主义(物理外的应用)。发现 - 所提出的类似量子的模型提供了像Fr€ohlich凝结这样复杂的社会政治现象的一致操作模型。研究局限性/含义 - Ohlich凝结的社会模型在很大程度上基于开放量子系统的理论。其一致的详细说明需要额外的努力。实用的含义 - 现代信息开放社会的稳定性证明了这样的现象,例如社会上的凝结。社会含义 - 接近ohlich冷凝的状态是社会稳定的有力来源。了解其信息结构和起源可能有助于稳定现代社会。独创性/价值 - 在社会和政治科学中,fr ohlich凝结的量子般模型的应用确实是社会稳定的新颖和原始方法,用于社会稳定的数学模型,从而暴露于大众媒体和基于Internet的来源的强大信息辐射。关键字社交fr€ohlich冷凝水,社会稳定性,保留秩序,类似量子的建模,高社交温度,信息领域,信息储存库,bose-einstein Statistics,Planck公式,信息超负荷,不可区分性,不可区分性,社交能源,社交能源
电力系统的深度脱碳引起了人们对可以维持可靠能源供应的产能的需求的担忧。考虑到这一问题,我们探索了具有热量储存的浓缩 - 极性植物以提供这种能力的无碳来源。我们开发了一种评估考虑未来系统的浓缩 - 极性植物的能力贡献的方法。此类考虑很重要,因为与今天相比,净负载模式的潜在差异(例如g。,由于较高的可再生能源渗透率)。使用历史数据涵盖18年的历史数据,我们证明了具有热量储能的浓缩 - 极性工厂可以提供这种必要的能力,而对其财务生存能力几乎没有影响。我们研究了近视决策和对未来系统条件对浓缩 - 磨性工厂运行的影响以及对CA能力贡献的影响的影响。我们发现,只要开发和使用适当的预测技术,就可以对这种浓缩太阳能工厂产生有限的影响。总体而言,我们的工作表明,具有热能储能的浓缩 - 极性植物可能在脱碳能力系统中提供可靠的电力供应中起作用。
单壁碳纳米管 (SWCNT) 具有可调的光电特性和高载流子迁移率,是下一代能量收集技术(包括热电发电机)的理想材料。控制这些独特的 1D 纳米材料中的费米能级通常由 SWCNT 与电子或空穴接受物质之间的电荷转移相互作用实现。掺杂 SWCNT 网络的传统方法通常涉及将分子氧化还原掺杂剂物质扩散到固态薄膜中,但溶液相掺杂可能为载流子传输、可扩展性和稳定性提供新途径和/或好处。在这里,我们开发了使用 p 型电荷转移掺杂剂 F 4 TCNQ 对聚合物包裹的高浓缩半导体 SWCNT 进行溶液相掺杂的方法。这使得掺杂的 SWCNT 墨水可以铸成薄膜,而无需额外的沉积后掺杂处理。我们证明在 SWCNT 分散过程的不同阶段引入掺杂剂会影响最终的热电性能,并观察到掺杂剂改变了聚合物对半导体和金属 SWCNT 的选择性。与致密的半导体聚合物薄膜相比,溶液相掺杂通常会导致形态破坏和 TE 性能比固态掺杂更差,而溶液掺杂的 s-SWCNT 薄膜的性能与固态掺杂的薄膜相似。有趣的是,我们的结果还表明,溶液相 F 4 TCNQ 掺杂会导致固态薄膜中完全电离和二聚化的 F 4 TCNQ 阴离子,而在沉积后掺杂 F 4 TCNQ 的薄膜中则不会观察到这种情况。我们的研究结果为将溶液相掺杂应用于可能需要高通量沉积技术的广泛高性能基于 SWCNT 的热电材料和设备提供了一个框架。
摘要:智利的能源部门要求在不久的将来可再生能源的可再生能源显着增加,与天然气工厂相比,集中的太阳能(CSP)技术变得越来越有竞争力。以此为动机,本文介绍了太阳能技术(例如混合植物和基于天然气的热力技术)之间的比较,因为这两种技术具有多种特征,这些特征可与功率网格相当且有益。这种比较是从经济的角度进行的,使用水平的能源成本(LCOE)度量以及与灵活性相关的系统性好处,这是由于智利能量矩阵的当前脱碳场景而非常需要的。结果表明,所研究的四种杂交植物模型的LCOE低于燃气厂的LCOE。由光伏和太阳能塔工厂(STP)组成的太阳能混合厂具有13小时的存储空间,没有生成限制的含量为53 USD/MWH,而天然天然气技术则以85%的植物因子和2.0 usdd usd/mmbtu的可变燃料成本为85 usd/mmbtu,具有86 US/MD/MD/MD的可变燃料成本。因此,在一组特定条件下的太阳杂种植物比其最接近智利电网的竞争对手更具成本效益,同时仍提供显着的可分配性和灵活性。
Zone OVECE餐厅零售购物中心学校仓库大型中小型快速完整Prim。 sec。 1A 0.37 4.42 28.00 5.73 3.01 16.49 11.20 1.58 1.40 12.31 2A 1.19 27.80 354.93 67.24 35.22 163.20 80.79 23.16 13.24 91.33 2B 0.22 9.98 96.47 14.89 8.20 37.23 20.68 4.08 2.00 20.47 3A 1.64 26.19 321.17 74.72 37.12 175.36 83.23 23.44 16.47 104.59 3B 1.05 24.46 158.39 46.36 15.84 91.91 51.02 11.07 7.13 81.03 3C 0.43 4.65 25.93 5.08 1.93 14.05 8.43 1.18 0.96 5.42 4A 4.16 40.70 312.15 65.31 42.42 187.11 82.22 22.20 17.51 86.23 4B < 0.01 1.25 15.79 3.91 1.94 8.75 1.83 0.75 0.55 2.39 4C 0.57 6.70 40.88 10.50 3.41 31.49 8.71 2.33 2.11 15.35 5A 1.62 36.25 306.88 94.31 47.73 252.1 83.41 22.83 19.86 126.20 5B 0.44 11.70 107.34 18.83 10.36 58.24 16.42 5.55 3.81 24.27 6A 0.49 10.21 80.46 18.62 10.34 69.71 12.45 4.17 3.62 16.42 6b <0.01 1.19 10.08 2.27 1.33 6.70 1.30 0.93 0.93 0.75 1.73 7 0.04 1.12 10.79 2.62 1.22 1.22 7.97 0.55 0.55 0.58 0.58 0.65 1.53Zone OVECE餐厅零售购物中心学校仓库大型中小型快速完整Prim。sec。1A 0.37 4.42 28.00 5.73 3.01 16.49 11.20 1.58 1.40 12.31 2A 1.19 27.80 354.93 67.24 35.22 163.20 80.79 23.16 13.24 91.33 2B 0.22 9.98 96.47 14.89 8.20 37.23 20.68 4.08 2.00 20.47 3A 1.64 26.19 321.17 74.72 37.12 175.36 83.23 23.44 16.47 104.59 3B 1.05 24.46 158.39 46.36 15.84 91.91 51.02 11.07 7.13 81.03 3C 0.43 4.65 25.93 5.08 1.93 14.05 8.43 1.18 0.96 5.42 4A 4.16 40.70 312.15 65.31 42.42 187.11 82.22 22.20 17.51 86.23 4B < 0.01 1.25 15.79 3.91 1.94 8.75 1.83 0.75 0.55 2.39 4C 0.57 6.70 40.88 10.50 3.41 31.49 8.71 2.33 2.11 15.35 5A 1.62 36.25 306.88 94.31 47.73 252.1 83.41 22.83 19.86 126.20 5B 0.44 11.70 107.34 18.83 10.36 58.24 16.42 5.55 3.81 24.27 6A 0.49 10.21 80.46 18.62 10.34 69.71 12.45 4.17 3.62 16.42 6b <0.01 1.19 10.08 2.27 1.33 6.70 1.30 0.93 0.93 0.75 1.73 7 0.04 1.12 10.79 2.62 1.22 1.22 7.97 0.55 0.55 0.58 0.58 0.65 1.53
纠缠共享是一种通过多个中间中继量子节点将多个量子节点聚合在一起的共享技术[3,75–89]。纠缠共享过程包括量子节点间纠缠传输和纠缠交换(扩展)的几个步骤[6,7,9,90–100]。纠缠连接的纠缠吞吐量量化了该量子连接上在特定保真度下每秒可传输的纠缠态的数量[11,43,44]。纠缠连接可以用成本函数来表征,该函数实际上是给定连接的纠缠吞吐量的倒数[11,42,43]。因此,找到纠缠量子网络中相对于特定成本函数的最短纠缠路径(一组纠缠连接)非常重要 [8, 80, 81, 101 – 106]。纠缠网络中的给定量子节点可以在本地量子存储器中存储多个纠缠系统,然后可将其用于纠缠分布 [11 – 13, 42 – 44, 77 – 83]。在我们当前的建模环境中,给定量子节点的纠缠态称为纠缠端口;因此,目标是找到纠缠网络纠缠端口之间的最短路径。因此,纠缠切换操作类似于纠缠切换器端口的分配问题。纠缠切换器端口模拟了一个量子切换器节点,它在纠缠连接之间切换,并对选定的纠缠连接应用纠缠交换。VLSI(超大规模集成电路)设计领域[107-110]、集成电路(IC)的自动生成和电子设计自动化(EDA)工具[107-110]也解决了类似的问题,但我们量子网络设置的主题和最终目标是不同的。有一些基本思想可以在 EDA 领域和纠缠量子网络的开放问题之间开辟一条道路。我们发现,这条道路不仅存在,而且还使我们能够将 EDA 工具和量子香农理论的最新结果[11,41]相结合,从而为量子互联网提供有价值的结果。在这里,我们为量子互联网定义了纠缠浓缩服务。纠缠浓缩服务旨在提供高优先级量子节点强连接子集之间的纠缠连接,使得每对节点之间存在纠缠连接。该服务的主要要求如下:(1)最大化所有连接节点之间的纠缠吞吐量,(2)最小化量子节点之间的跳跃距离(跨越的量子节点数,取决于连接的纠缠级别)。主要要求的重要性如下。最大化链路的纠缠吞吐量旨在为高优先级用户提供无缝、高效的量子通信。最小化跳跃距离的目的是减少物理环境(链路损耗、节点损耗)带来的噪声,并减少与量子传输和纠缠分布过程相关的延迟。我们通过量子节点中可用的纠缠态(称为纠缠端口)来解决纠缠集中问题。为了处理几个不同的约束,例如纠缠连接的纠缠吞吐量或跳跃距离,我们将量子节点的纠缠端口组织成一个基图。基图包含纠缠的映射
在数字时代,信息是组织的主要资产之一,成为竞争优势。为了保护信息,信息安全采取了查找信息存储漏洞的做法。用于查找网页漏洞的一种做法是 Google Hacking。Google Hacking 是一种信息安全实践,它使用 dorks、搜索字符串(添加或不添加高级 Google 运算符)。Google 黑客数据库可在互联网上获取,该数据库来自进攻性安全组织,包含经过测试和验证的黑客。尽管基地里有大量的呆子,但基地的属性却很少,因此使用它的人必须有先验知识。丰富这个 dorks 基础的一种方法是使用自然语言处理技术,这是人工智能的一个子领域,负责理解、生成和
氨是大气中最重要的痕量气体之一,也是唯一呈碱性的气体。它可溶于水,可与气溶胶发生反应,从而影响大气酸度。大多数氨排放物通过生物过程释放到大气中,主要是通过有机物的分解。1 主要工业来源是化肥和氨生产厂。在确定氨在大气中的确切作用时,区分游离氨和铵颗粒非常重要。过滤技术已用于将气相与颗粒分离,但使用它们可能会因引入人工制品而导致误差。例如,可以通过滤纸上的硝酸铵释放氨来获得对氨浓度的高估。同样,气态氨与过滤器上沉积的酸发生反应,也会导致低估。研究表明,扩散管可有效分离气体和颗粒,其理论和用于测定气态物质的应用已得到综述。3-4 空气在层流条件下通过涂有选择性吸附剂的管道吸入。气态物质扩散到收集表面。颗粒的扩散速度低得多,无法迁移到壁上,因此无法被吸收,也不会对最终测量产生影响。Gormley 和 Kennedy5 得出了一个描述流经圆柱形管道的流体扩散的解: - = 0.819 exp (14.6272A) + 0.0976 exp (-82.22A) C() (1) 其中 c 是离开管道的气体平均浓度,co 是进入管道的气体浓度。