一种被称为“乳白色海”的现象,这一事件首次出现在爪哇南部的海洋中,具有生物发光能力的海洋微生物。本研究旨在分析事件期间的环境状况。本研究使用了几个开放的门户数据,特别是2018年7月30日,2019年6月30日和2019年7月4日。结果显示了海面温度(SST)与叶绿素a的浓度之间的相关性。8月1日,叶绿素a的最大浓度在0.1-1.5mg/ m -3之间,随后由于SST的降低而下降和8月4日的下降。在爪哇南海发现了几种涡流和上升流。但是,海岸线部分仅在2019年7月31日至2019年8月2日可见,并于2019年8月3日褪色。印度洋东部的海洋电流系统代表了叶绿素A分布和营养成分的关键因素。养分浓度,尤其是硝酸盐,在乳白色海上事件中波动,范围为0.01-0.02mmol/m³,显示有限的变化。在这段时间内,海面温度(SST)和叶绿素a的浓度与乳白色海面积周围的纳米浮游生物的丰度相关,牛奶海域范围为0至1mg/m³。乳白色现象主要是由SST降低和叶绿素A和纳米团体的浓度增加驱动的,并具有涡流和上升的催化剂。
1。湿地2。关键的含水层补给区域3。鱼类和野生动植物栖息地保护区4.地质危害区域5。经常被洪水淹没的地区为人,动物和植物提供宝贵的生态系统服务。关键区域还可以保护人们免受诸如浮游,滑坡和侵蚀危害等危害。在采用关键领域保护标准时,地方政府必须使用最佳的科学(BAS)来确保不会净损失生态功能和价值,也可以保护无效的鱼类。Lakewood Municipal Code(LMC)标题14和Title 16,该城市的Shoreline Master计划(SMP)概述程序,标准和保护这些关键领域的保护。技术报告和映射资源:在水,湿地,斜坡,溪流或野生动植物栖息地附近提出开发时,可能需要申请人作为开发申请的一部分提供其他信息或报告。这些报告应由合格的顾问或有执照的专业人员准备。此外,关键区域可能很难识别。当我们的公共GIS映射资源位于在线许可门户网站上,显示了潜在关键领域的映射关键领域或指标时,需要专业的生物学家,地质学家,树木学家或水理学家进行现场调查。
光同源性检测已被广泛用于测量字段正交的连续变量(CV)量子信息处理。在本文中,我们探讨了在“光子计数”模式下操作共轭同型检测系统以实现离散变量(DV)量子密钥分布(QKD)的可能性。共轭同源检测系统由光束分离器组成,然后是两个光学同伴检测器,可以同时测量传入量子状态的一对共轭四倍体x和p。在经典电动力学中,x 2 + p 2与输入光的能量(光子数)成正比。在量子操作中,X和P不上交,因此上述光子数测量本质上是嘈杂的。这意味着QKD标准安全证明的盲目应用可能会导致模拟性能。我们通过利用拟议检测方案的两个特殊特征来克服这一障碍。首先,外部对手不能操纵与真空浮游相关的基本检测噪声。第二,重建接收器末端的光子数分布的能力可以对对手的可能攻击施加其他约束。为例,我们使用共轭同胞检测来研究BB84 QKD的安全性,并通过数值模拟评估其性能。这项研究可以基于基于单光子检测和基于相干检测的CV-QKD的良好DV-QKD的互补,为新的QKD方案开辟了大门。
摘要。2021年7月在欧洲中部的特殊浮游受到比利时的影响。由于降雨是此事件的触发因素,因此本研究的目的是根据两种观察数据来表征2021年7月13日至16日在比利时的降雨量。首先,已经汇总了比利时天气和水力服务所记录的高质量雨量测量表记录的观察结果并检查了质量。第二,已经证明,基于雷达的降雨产物可以在比利时高空间和时间分辨率下可靠地估计定量沉淀。这里对这些数据进行了几项分析,以描述事件期间降雨的空间和时间分布。这些分析表明,事件期间的降雨积累在大型方面达到了前所未有的水平。从1到3 d的持续时间累积显着超过了几个地方的200年回报水平,在200年的回报水平上,在Vesdre盆地的本地2和3 d值超过200年的回报水平。需要尽可能记录这样的破坏事件,并且必须与科学界共享可用的观察数据,以进行水文,城市规划方面的进一步研究,更普遍地,在所有多学科研究中,旨在识别和理解导致这种灾难的因素。因此,相应的降雨数据是在补充剂中自由提供的(Journée等,2023; Gouden-Hoofdt等,2023)。
摘要。2021年7月在欧洲中部的特殊浮游受到比利时的影响。由于降雨是此事件的触发因素,因此本研究的目的是根据两种观察数据来表征2021年7月13日至16日在比利时的降雨量。首先,已经汇总了比利时天气和水力服务所记录的高质量雨量测量表记录的观察结果并检查了质量。第二,已经证明,基于雷达的降雨产物可以在比利时高空间和时间分辨率下可靠地估计定量沉淀。这里对这些数据进行了几项分析,以描述事件期间降雨的空间和时间分布。这些分析表明,事件期间的降雨积累在大型方面达到了前所未有的水平。从1到3 d的持续时间累积显着超过了几个地方的200年回报水平,在200年的回报水平上,在Vesdre盆地的本地2和3 d值超过200年的回报水平。需要尽可能记录这样的破坏事件,并且必须与科学界共享可用的观察数据,以进行水文,城市规划方面的进一步研究,更普遍地,在所有多学科研究中,旨在识别和理解导致这种灾难的因素。因此,相应的降雨数据是在补充剂中自由提供的(Journée等,2023; Gouden-Hoofdt等,2023)。
摘要。dansgaard – oeschger(do)事件是冰川气候的广泛特征。被广泛接受的是,在北大西洋地区最多概述的气候变化是由强度和/或北向循环的强度和/或北端的突然变化引起的,可能源自大洋 - 冰冰 - 冰峰系统的自发过渡。在这里,我们使用一种地球系统模型,该模型会产生类似的事件,以表明发生千禧一代AMOC变化的气候条件由表面海洋浮力片控制。在特殊情况下,我们发现,当北大西洋北部大西洋从负面变成正变成积极时,浮力浮游在拉布拉多和北欧海中具有深水形成的当今对流模式变得不稳定。在这一点的接近度中,该模型在与强和弱AMOC状态相关的不同对流模式之间产生跨性别。浮力浮标取决于表面的淡水和热孔以及海水系数的温度依赖性海水的温度依赖性。我们发现,较大的冰盖倾向于通过减少净淡水流量来稳定对流,而CO 2诱导的冷却降低了浮力损失,并破坏对流的稳定。这些结果有助于解释事件出现的条件,并且是对突然气候变化机制的改进理解的一步。
沿海水域的浮游微生物构成了食物网和生物地球化学循环的基础。波罗的海地区具有明显的环境梯度,是典型的沿海环境。然而,迄今为止,对这些环境梯度的微生物多样性评估既缺乏分类范围,也缺乏空间和时间尺度的整合。在这里,我们使用 DNA 宏条形码分析了 398 个样本的原生生物和细菌多样性,这些样本与波罗的海和卡特加特海峡-斯卡格拉克海峡的国家监测同步。我们发现,与其他环境因素不同,盐度对细菌群落组成的影响大于对原生生物群落组成的影响。同样,贝叶斯模型表明,在较低(<9 PSU)和较高(>15 PSU)的咸水盐度中,细菌谱系出现的可能性都小于原生生物。尽管如此,原生生物的 α 多样性还是随着盐度的增加而增加。细菌 α 多样性的变化主要是季节性的,与冬季通过垂直混合引入深水生物群有关。我们认为原生生物在生态上对盐度不太敏感,因为区室化使它们能够将基本代谢过程与细胞膜分离。此外,细菌进一步和更频繁地扩散可能会阻碍局部适应。最终,基于 DNA 的环境监测扩展了我们对微生物多样性模式和潜在因素的理解。40
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
摘要。洪水是法国地中海地区的主要自然危害,每年造成损害和致命。这些流量是由以时间和空间范围有限的特征的重大预言事件(HPE)触发的。已经开发了新一代的区域气候模型,在公里量表上已经开发出来,允许对对流的深度表示,并对诸如HPE等局部规模现象的模拟进行了明确表示。对流 - 渗透区域气候模型(CPM)几乎没有用于水文影响研究中,而区域气候模型(RCMS)仍然不确定地中海流量的实体投影。在本文中,我们使用CNRM-AROME CPM(2.5 km)及其驾驶CNRM-Aladin RCM(12 km)在每小时的时间表上模拟位于法国地中海地区的Gardon d'Anduze流域上的浮游。气候模拟通过CDF-T方法纠正。使用了两个水文模型,一个集体和概念模型(GR5H)和一个基于过程的分布式模型(CREST),该模型已使用CPM和RCM的历史和未来气候模拟强迫。与RCM相比,CPM模型证实了其更好地产生极端小时降雨的能力。该附加值在流量峰的繁殖中传播在流量模拟上。未来的预测在水文模型之间是一致的,但两个气候模型之间有所不同。使用CNRM-Aladin RCM,
由生物膜引起的持续感染是一种紧急医学,应通过新的替代策略来解决。经典治疗和抗生素耐药性的低效率是由于生物膜形成而引起的持续感染的主要问题,这增加了发病率和死亡率的风险。生物膜细胞中的基因表达模式与浮游细胞中的基因表达模式不同。针对生物膜的有前途的方法之一是基于纳米颗粒(NP)的治疗,其中具有多种机制的NP阻碍了细菌细胞在浮游物或生物膜形式中的抗性。例如,通过不同的策略干扰与生物膜相关的细菌的基因表达,诸如银(Ag),氧化锌(Ag),氧化锌(ZnO),二氧化钛(TIO 2),氧化铜(CU)和氧化铁(Fe 3 O 4)。NP可以渗透到生物膜结构中,并影响外排泵的表达,法定感应和与粘附相关的基因,从而抑制生物膜的形成或发育。因此,通过NPS来理解和靶向细菌生物膜的基因和分子基础,指向可以控制生物膜感染的治疗靶标。同时,应通过受控的暴露和安全评估来避免NP对环境及其细胞毒性的可能影响。本研究的重点是生物膜相关的基因,这些基因是抑制具有高效NP的细菌生物膜的潜在靶标,尤其是金属或金属氧化物NP。