doi:https://doi.org/10.56293/ijasr.2025.6304 IJASR 2025第8卷第8期,1月1日至2月1日ISSN:2581-7876摘要:软骨的再生是组织工程和重新生产药物的关键研究领域,并为其独特的结构和宗教质量的修复质量修复。当前,人们对软骨分化的机制有很大的了解,因此需要进一步探索。膜脂质筏是细胞膜中的动态微域,富含胆固醇和鞘脂,是信号转导和参与蛋白质分布以及细胞功能调节的关键平台。CD90(THY-1)是一种糖蛋白,该糖蛋白通过糖基磷脂酰肌醇(GPI)锚定在脂质筏上,该糖蛋白(GPI)广泛表达在间质干细胞(MSC)等细胞表面上,并调节细胞粘附,迁移和分化。最近的研究表明,脂质筏稳态和CD90在软骨形成过程中的协同作用,调节关节软骨的修复和再生。本综述总结了脂质筏和CD90有助于软骨形成的机制,重点是它们在信号通路调节中的核心作用及其对软骨分化的影响。此外,它突出了它们在软骨组织工程中的潜在应用。关键字:脂质筏,CD90(THY-1),软骨形成,信号转导,组织工程
以前,我们报道了心脏周围的水肿先于斑马鱼胚胎/幼虫的功能性心力衰竭,暴露于2,3,7,8-四氯迪本佐-P-二恶英(TCDD)。这增加了心包水肿本身可能影响形态心脏发育并在此后功能的可能性。为了解决心包水肿与心脏障碍之间的关系,我们在暴露于TCDD的斑马鱼幼虫的后期确定了心包水肿的形态和功能参数。tcdd(1.0 ppb)在心房和心室之间降低角度,并长长的心室长度,而没有明确依赖心包水肿的严重程度。相反,TCDD通过心包水肿的形成延长了长时间的窦。NRF2激活剂硫烷在受精后72和96小时明显抑制心包水肿(HPF)。sulforaphane对TCDD诱导的角度(长度长长的角度)的减小没有显着影响,但几乎通过TCDD消除了心房和窦的延长。仅在96 hpf处的严重水肿的幼虫中观察到TCDD的特征性弦乐心脏。TCDD降低了TCF21的表达,无论存在或不存在硫烷。这些结果表明,心脏的水肿会影响形态学心脏发育的某些方面并抑制心脏泵功能,而TCDD可以诱导心包水肿独立于心脏畸形。
此预印本版的版权持有人于2024年12月27日发布。 https://doi.org/10.1101/2023.02.22.529596 doi:Biorxiv Preprint
摘要:脂质筏是特定酶和受体所在的液体排序结构域。这些膜平台在各种信号通路中起着至关重要的作用。脂质环境中的改变,例如氧化应激引起的变化,可能会导致膜蛋白的重要功能破坏。细胞膜微阵列已成为研究脂质和膜蛋白在大尺度上的有力方法。基于该技术和液体订购子域的重要性,我们开发了一种新的印刷脂质筏技术,具有保存的天然蛋白质结构和脂质环境。为了验证这项技术并评估其对不同目标的潜力,开发了包含两种不同细胞类型(星形胶质细胞和神经元)的木筏膜微阵列(RMMA)和三种不同的条件(对照状况中的星形胶质细胞,代谢应激和氧化应激)。研究筏结构域之间脂质谱的差异,对RMMA进行了MALDI-MS测定。进行了印刷筏结构域中天然蛋白活性(酶活性和配体结合)的保存,进行NADH氧化还原酶的差异,GAPDH,胆碱酯酶活性以及Sigma-1和Sigma-1和Sigma-2结合测定。我们证明了适合膜亚域的这种新的微阵列技术的性能,可探索与神经病理相关的不同压力条件下脑细胞系的脂质组成和蛋白质活性的变化。■简介
摘要:在这项工作中,我们报告了一种合成精心设计的瓶洗聚合物的策略。通过可逆的添加 - 碎片链转移(RAFT)聚合制备了聚苯乙烯(1 -PS N)的重生(1 -PS n)的重生二乙酸酯。重氮可以忍受筏聚合条件,并保留在屈服的PS宏观工具的链端上。通过烯丙基PDCL/L催化剂聚合到将每个骨链在每个骨干原子上携带侧链携带的瓶刷聚合物((1 -PS N)M s)。 与此同时,使用PEG(2 -PEG)的重18酶乙酸盐含量分子的聚合使用PD(II) - 近端(1 -PS n)M作为宏观监测剂来合成,其中包含刷状PS和聚乙烯乙二醇(PEG)的两亲性奶瓶聚合物(PEG)。 产生的两亲性(1 -PS 30)50 -b - (2 -peg)100可以在水溶液中自我组装成良好的核心 - 壳 - 壳胶束。 胶束的流体动力直径为大约。 146 nm,具有良好的生物相容性。 这些结果表明胶束在药物输送方面具有很大的潜力。将每个骨链在每个骨干原子上携带侧链携带的瓶刷聚合物((1 -PS N)M s)。与此同时,使用PEG(2 -PEG)的重18酶乙酸盐含量分子的聚合使用PD(II) - 近端(1 -PS n)M作为宏观监测剂来合成,其中包含刷状PS和聚乙烯乙二醇(PEG)的两亲性奶瓶聚合物(PEG)。产生的两亲性(1 -PS 30)50 -b - (2 -peg)100可以在水溶液中自我组装成良好的核心 - 壳 - 壳胶束。胶束的流体动力直径为大约。146 nm,具有良好的生物相容性。这些结果表明胶束在药物输送方面具有很大的潜力。
1. 描述 A. 概述 这些救生筏供飞机和船舶船员/乘客在水上紧急情况下使用。每个救生筏由一个方形浮力管、粘合在其上的织物甲板、救生索、登船把手、二氧化碳充气系统、固定绳、手动泵、排水桶、海锚和手提箱组成。救生筏手提箱上印有零件号、序列号、重量、乘员容量和操作说明。救生筏充气后,此手提箱还可用作海锚。救生筏的材料和组件经过精心挑选,以提供可靠性、延长使用寿命和降低服务成本。浮力管和甲板由坚韧、重型氯丁橡胶涂层尼龙制成,符合严格的政府规范。顶篷由高可见度橙色复合涂层尼龙 Velcro 封口制成。充气气体释放阀采用最可靠的设计,即穿刺盘类型,气缸由轻质、耐腐蚀的铝制成。救生设备装在自己的行李箱中,外部与救生筏行李箱分开。设备和救生筏行李箱使用 Velcro 和塑料扎带从外部相互连接。这些独立的行李箱为救生筏和设备组合提供了最大的灵活性。现在可以单独购买基本救生筏和设备以满足个人需求,或者可以轻松修改设备而不干扰基本救生筏。可选信号弹、带碱性电池的两节手电筒、急救箱、救生筏修理包、海水染料标记器、信号镜、食物/水配给和信号哨。更广泛的救生设备包括:磁罗盘、8 品脱海水淡化器、钓鱼工具包、美工刀、75 英尺固定绳、救生手册、桨、雷达反射器/保温毯、海绵和/或 ELT/EPIRB。设备行李箱上印有零件号、序列号和重量。此手提箱通过 Velcro 带和塑料扎带固定在筏手提箱上。筏充气后,拉动海锚(筏手提箱)并取下设备手提箱,即可轻松取出设备。B. 充气系统每个筏都有一个二氧化碳充气系统,由铝制气缸和阀门组件组成。该组件连接到入口止回阀,该止回阀粘合在筏浮力管上。通过拉充气/固定线手柄释放气体,直到气体释放阀被激活。气体释放线从阀门中拉出并保持连接在固定线上。C. 平齐式手动充气/放气阀平齐式手动充气/放气阀粘合在浮力管上,如果在温度变化或长时间使用期间压力损失,可以使用手动泵给筏子充气。此阀门还用于释放因温度过高而导致的筏上压力。D. 规格项目 4 人 9 人
选定的细胞质过程的生理学。 细胞质和细胞膜的结构和功能。 。 膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的细胞质过程的生理学。细胞质和细胞膜的结构和功能。。膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。膜封闭室的生理学。选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的胞质过程的生理学。核糖体,polisomes。内鼠和胞吐途径。细胞与外细胞基质之间的相互作用。细胞骨架。细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。细胞膜生理学。脂质的结构及其在细胞和细胞外基质中的功能。脂质筏。小洞。质膜的不对称性。细胞运输。葡萄糖转运蛋白。ABC转运蛋白和MDR现象。ABC转运蛋白和MDR现象。
摘要:本研究报告了空间群为I 4 1 md 的磁性外尔半金属候选材料NdAlGe单晶的成功生长。该晶体采用浮区技术生长,该技术使用五个激光二极管(总功率为2 kW)作为热源。为了确保在生长过程中稳定形成熔融区,我们采用了钟形分布的垂直辐射强度曲线。将电弧熔炼锭粉碎后的标称粉末在静水压力下成型,然后在由氧化钇稳定的氧化锆制成的氧气泵产生的超低氧分压(<10 − 26 atm)的氩气气氛中烧结进料棒和种子棒,加热至873 K。成功生长出长度为50 mm 的NdAlGe单晶。生长的晶体在 13.5 K 时表现出块状磁序。基本物理特性通过磁化率、磁化强度、比热、热膨胀和电阻率测量来表征。这项研究表明,磁序在 NdAlGe 中诱导各向异性磁弹性、磁熵和电荷传输。