摘要 小丑鱼是雀鲷科(Pomacentridae)的一个种群,约有 30 种,长期以来一直引起珊瑚礁鱼类生态学家的兴趣。小丑鱼结合了本文描述的一系列原始生物学特性和繁殖的实际特征,现在正成为发育生物学、生态学和进化科学感兴趣的实验系统。它们体型较小,与用于水产养殖的大型海洋鱼不同,在特定的养殖场中相对容易繁殖。由于它们生活在海葵中结构严密的社会群体中,因此小丑鱼可以解决一系列相关的科学问题,例如生长和性别变化的社会控制、控制共生的机制、复杂颜色模式的建立和变化以及衰老的调节。结合可以在实验室或直接在野外进行的行为实验以及功能遗传学和基因组学,小丑鱼为生态进化发育提供了一个有吸引力的实验系统。关键词:小丑鱼、海葵鱼、生态进化发育
热带珊瑚礁是世界上最多样化和最具生产力的生态系统之一,支持着一系列生态系统产品和服务,为数百万人的福祉做出贡献。然而,由于当地和全球的人为影响,全球珊瑚礁覆盖率正在下降( Wilkinson,1999 )。特别是,全球气候变化导致的大规模白化事件的频率和严重程度预计在未来会进一步增加,并威胁到珊瑚礁的长期生存( Hughes 等人,2017 )。这种海洋生态系统的营养和结构基础依赖于石珊瑚和它们相关的微生物共生体(光合甲藻、细菌、古菌等)之间的互利关系,形成一种称为珊瑚全生物的元生物( Ste ́ venne 等人,2021 )。尽管人们对珊瑚全生物功能的分子基础有了越来越多的了解,但我们的知识仍然存在重大空白。如果我们要充分了解珊瑚宿主与其微生物共生体之间建立和维持相互作用的潜在基本过程,以及珊瑚是否或如何适应环境干扰并生存下来,就必须揭示珊瑚宿主与其微生物共生体之间相互作用的建立和维持的潜在基本过程。模型生物的使用有着成功的记录,并在分子、细胞和发育生物学方面取得了重大进展( Jacobovitz 等人,2023 年)。模型生物 Aiptasia,即 Exaiptasia diaphana,是一种小型海葵,遍布亚热带和热带海洋水域,细胞内寄生着共生的甲藻(科:Symbiodiniaceae)( LaJeunesse 等人,2018 年)。与珊瑚不同,海葵没有碳酸钙骨架,可以在实验室条件下轻松操作和培养,并且可以在兼性共生状态下生存,这允许在非共生对照动物上进行实验(Matthews 等人,2016 年)。自 2008 年正式提出将其作为研究刺胞动物共生的模型系统以来(Weis 等人,2008 年)。越来越多的实验室采用海葵来探索以下研究问题:发育和
基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。