气候变化的轨迹” NSFAGS-2235177,C。Deser(NCAR)和G. Persad(Austin U. Texas),Co-Pis,2/23-1/25,$ 985K($ 173K to Ncar)。出版物(按时间顺序分顺序)224。Deser,C.,A。S. Phillips,M。A. Alexander,D。J. Amaya,A。Capotondi,M。G. Jacox和J. D. Scott,2024年:海洋热和冷浪的强度和持续时间的未来变化:来自耦合模型模型初始条件大型合奏的见解。J.气候,37,1877-1902,doi:10.1175/jcli-d-23-0278.1。223。Hwang,Y。T.,S。-P。 Xie,P。-J。 Chen,H. -y。 Tseng和C. Deser,2024年:人为气溶胶在21世纪初期对LaNiña的持续状态的贡献。proc。natl。学院。SCI。 U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。222。Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。adv。,10,EADK8646(2024)。doi:10.1126/sciadv.adk8646。221。Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。地球。res。Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。Lett。,在印刷中。220。Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。攀登。dyn。,正在审查。219。J.218。Gervais,M。L. Sun和C. Deser,2024年:预计的北极海冰损失对北美日常天气模式的影响。气候,37,1065–1085,https://doi.org/10.1175/jcli- D-23-0389.1。Zhang,X。和C. Deser,2023年:自1949年以来观察到的南大洋变暖和冷却趋势的热带和南极海冰影响。NPJ攀登。 Atmos。 SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。NPJ攀登。Atmos。SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。SCI。,正在审查。217。Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。J.气候,正在审查中。216。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y.-o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。J.气候,正在审查中。
一种被称为“乳白色海”的现象,这一事件首次出现在爪哇南部的海洋中,具有生物发光能力的海洋微生物。本研究旨在分析事件期间的环境状况。本研究使用了几个开放的门户数据,特别是2018年7月30日,2019年6月30日和2019年7月4日。结果显示了海面温度(SST)与叶绿素a的浓度之间的相关性。8月1日,叶绿素a的最大浓度在0.1-1.5mg/ m -3之间,随后由于SST的降低而下降和8月4日的下降。在爪哇南海发现了几种涡流和上升流。但是,海岸线部分仅在2019年7月31日至2019年8月2日可见,并于2019年8月3日褪色。印度洋东部的海洋电流系统代表了叶绿素A分布和营养成分的关键因素。养分浓度,尤其是硝酸盐,在乳白色海上事件中波动,范围为0.01-0.02mmol/m³,显示有限的变化。在这段时间内,海面温度(SST)和叶绿素a的浓度与乳白色海面积周围的纳米浮游生物的丰度相关,牛奶海域范围为0至1mg/m³。乳白色现象主要是由SST降低和叶绿素A和纳米团体的浓度增加驱动的,并具有涡流和上升的催化剂。
最近的气候变化。月度(细线)和12个月的均值(如果是Niño3.4索引,填充线或填充的颜色)全球陆地温度异常,全球陆地和海面温度以及ElNiño指数。所有的基本时期1951- 1980年。http://www.columbia.edu/~mhs119/temperature/t_morefigs/(http://wwwww.columbia.edu/~mhs119/temperature/temperature/temperature/t_morefigs/)Niño3.4是热带太平洋地区5⁰n-5⁰s,170-120⁰W。红色阴影适用于厄尔尼诺现象和蓝色阴影时期。
摘要这项工作将机器学习整合到大气参数化中,以目标不确定的混合过程,同时保持可解释,预测和建立良好的物理方程。我们采用涡流质量频阵(EDMF)参数化来对各种对流和湍流制度的统一建模。为避免流失和不稳定性,随后与气候模型相结合,我们陷入了离线训练的机器学习参数化,我们将学习作为一个逆问题:数据驱动的模型嵌入了EDMF参数化中,并将其嵌入在一个二维的在线培训中,以一维垂直气候模型(GCM)列。训练是针对太平洋中GCM模拟的大型大规模条件的大型模拟(LE)的输出进行的。我们的框架不是优化亚网格尺度趋势,而是直接针对感兴趣的气候变量,例如熵和液态水路的垂直剖面。具体来说,我们使用集合卡尔曼反转来同时校准edmf参数和管理数据驱动的侧向混合速率的参数。校准的参数化优于现有的EDMF方案,尤其是在当前气候的热带和亚热带位置,并且在模拟AMIP4K实验的海面温度下增加的海面温度下,在模拟浅层积木和层状机制方面保持了高忠诚度。结果展示了物理上约束数据驱动模型的优势,并通过在线学习直接针对相关变量,以构建强大而稳定的机器学习参数化。
摘要:预计热应力会随着全球变暖而加剧,从而引起重大的社会经济影响并威胁人类健康。湿泡体温度(WBT)是评估区域和全球热应激变异性和趋势的有用内分子。但是,欧洲WBT及其潜在机制的变化尚不清楚。使用观测和重新分析数据集,我们在1958年至2021年越过欧洲的夏季WBT表现出了显着的变暖。特别是,在过去的64年中,欧洲夏季WBT已超过1.0 8 C。我们发现,欧洲夏季WBT的增加是由近表面变暖的温度和增加的大气水分含量驱动的。我们确定了欧洲夏季WBT变异性的四种主要模式,并研究了它们与大规模大气循环和海面温度异常的联系。欧洲WBT变异性的第一个主要模式表现出突出的长期变化,主要是由闪lobal波列和同时的海面温度变化驱动的。欧洲WBT变异性的最后两种主要模式主要显示年际变化,表明对大型大气动力学和附近海面温度变化的直接和快速响应。进一步的分析显示了全球变暖和中纬度循环中夏季WBT变化的作用。我们的发现可以增强对欧洲热压力驱动因素的理解,并为区域决策者和气候适应计划提供宝贵的见解。
摘要。使用西北大西洋的1 /12°区域模型(MOM6-NWA12),我们从1°全球前铸型模型中降低了回顾性季节性预测的阶段。为了评估降尺度是否提高了表面温度,盐度和腐蚀温度的预测技能,将彼此的全局和缩放预测进行比较,并使用异常相关性进行了持久性的参考预测。还根据平均偏差和集合扩散评估了两组预测。我们发现,在美国东北部大型海洋生态系统中,缩小缩小显着提高了每月海面温度异常的预测技能,这是全球模型在历史上努力熟练地预先预先预先预测的地区。在大多数初始化月份和交货时间中,该区域的降量表海面温度(SST)的预测也比胜任基线更熟练。尽管此阶段中的某些SST预测技能源于最近的快速变暖趋势,但在删除趋势的贡献后,通常保持持久性的预测技能,并且还保留了可预测过程的技能模式。虽然缩小缩小主要提高了美国东北部地区的SST异常预测技能,但它改善了北美东海岸许多海洋生态系统的底部温度和海面盐度异常技能。al-尽管通过降尺度的异常预测改善无处不在,但混合了降尺度对预测偏差的影响。降尺度通常会降低全球模型中发现的平均表面盐度偏见,特别是在具有清晰盐度梯度的区域(北部
太空部门在支持印度气象局 (IMD) 方面发挥着至关重要的作用,它为天气预报、飓风跟踪和环境监测提供实时卫星数据。INSAT 和 GSAT 等卫星使 IMD 能够监测云量、海面温度和大气条件,从而提高预报准确性。太空遥感有助于灾害管理、农业规划和气候研究。此外,太空技术有助于跟踪飓风、发出预警和监测空气质量,有助于公共安全和灾害防备。IMD 和 ISRO 之间的合作增强了预报能力,有利于短期天气预报和长期气候研究。
爱尔兰的气候正在发生变化,对人,地点和自然的影响不断增加。2023是有记录以来最温暖,最潮湿的一年。2023年6月,西海岸的极端海洋热浪导致了前所未有的海面温度,增加了关键海洋物种的死亡风险。在2023年10月至2024年3月之间,大雨造成了严重破坏农业活动,而风暴严重侵蚀了海岸线,韦克斯福德和北都柏林的道路和财产破坏了道路和财产。由于气候变化,米德尔顿(Midleton)的大雨和米德尔顿(Midleton)的洪水更加可能和严重。
2024年飓风季节是北大西洋盆地有史以来最热门的季节之一。在整个盆地的许多地区,海面温度打破了当地的季节性记录,或仅次于同样极端的2023季节。根据气候变化指数:海洋 - 以同行评审方法为基础的系统,量化了气候变化对海面温度的影响 - 整个分析区域的每日温度平均是在当今气候中的每日温度至少比没有气候变化的气候高44倍。在2024年的11次飓风中,有5次越过墨西哥湾,在那里,人为引起的海洋变暖的温度比没有它的世界要高约2°F。