量子密钥分发 (QKD) [1,2] 开创了两个远距离通信方 (通常称为 Alice 和 Bob) 在窃听者 (称为 Eve) 面前共享密钥的全新方式。自第一个 QKD 协议——BB84 协议 [1] 提出以来,QKD 已成为量子信息技术的关注焦点 [3,4]。QKD 的无条件安全性已通过不同方法得到证明 [5–7],该安全性由量子力学定律保证。在传统的 BB84 协议之后,各种类型的新型 QKD 协议相继被提出。其中,高维量子密钥分发 (HD-QKD) 因具有在单个光子上编码多个比特的出色能力以及对信道噪声的强容忍度而备受关注。在高维量子密钥分发系统中,信息被编码在量子态的高维自由度上,如时间能量纠缠[8–10]、时间箱编码[11,12]、路径[13,14]和轨道角动量[15–17]。HD-QKD协议的安全性证明也已建立[18–20]。随着高维量子态制备和测量技术的发展,近年来不同的HD-QKD方案取得了许多突破性的成果[21–23]。其中,基于时间箱的HD-QKD方案[11,23]实现了创纪录的密钥速率,并且可以抵御一般的相干攻击。不幸的是,现实的QKD系统中的实际设备往往存在缺陷,很少符合理论安全模型[24,25]。因此,QKD的理论和实践之间始终存在差距。在过去的几十年里,QKD系统的实用安全性得到了广泛的研究。窃听者可以窃取
到 2017 年底,欧洲航天局 (ESA) 将发射大气激光多普勒仪器 (ALADIN),这是一种在 355 nm 下工作的直接检测多普勒风激光雷达。ALADIN 机载演示器 A2D 是使用真实大气信号验证和优化 ALADIN 硬件和数据处理器进行风检索的重要工具。为了能够验证和测试 ALADIN 的气溶胶检索算法,需要一种从 A2D 检索大气后向散射和消光轮廓的算法。A2D 采用直接检测方案,使用双法布里-珀罗干涉仪测量分子瑞利信号,使用菲索干涉仪测量气溶胶米氏回波。信号由累积电荷耦合器件 (ACCD) 捕获。这些规范使得信号预处理中的不同步骤成为必要。本文描述了从 A2D 原始信号中检索气溶胶光学产品(即粒子后向散射系数 β p 、粒子消光系数 α p 和激光雷达比 S p )所需的步骤。
