这些标题:一种熟食消化成有机c har/ c危害暴风雨管理(精确)论文方向:Claire Gerente(Pron) + Marco Baratieri(Unibz)Co-enstécadrant:Audrey Villot(IMTA)研究团队:团队和绿色IMT大西洋部:DSEE是国际共同所有权的论文吗?是的,如果是的,则设想与沿海的有机体:拟议的主题Unibz具有跨学科的特征?是的,这个博士学位项目旨在支持Biochar/Char的知识,作为媒体,旨在返回地面。这必然要求了解生物量转化过程(生物学,热化学),也需要对城市径流中存在的污染物的吸附剂的多孔材料的表征,并支持植物生长(水保留能力,营养井等)。这些研究的目的是在城市规模上增加产品和流的循环。是否确定了共同融资的来源?是的,如果是,请指定设想哪种共同融资:中产阶级pri +semi-Bourse unibz其他信息:您希望传达的有用信息(如果相关):
1 Centro de Biotecnolologe i y gen gen gen gen rica de Plantas(CBGP),研究所研究Instituto nacional deIncorkingaciónyy y y y y y y agraria y Food(Inia-csic),政治是Cnica de Madrid(UPM),28222333233323332233233 pozuelo de alarar c。 daniel.truchado@upm.es(D.A.T。); mjuamol@ibmcp.upv.es(M.J.-M。); sararincre@gmail.com(s.r。); lucia.zurita@inia.csic.es(L.Z. ); jaime.tome@upm.es(J.T.-A。) 2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。); jaime.tome@upm.es(J.T.-A。)2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。
发达国家目前面临的挑战之一是整个电力系统的转型。制定了可再生能源在电力结构中的渗透率的宏伟目标,以降低能源部门的温室气体排放率并实现可持续发展目标。这些目标意味着能源结构中电力份额的提高,以及可再生能源电力份额的提高。这种新的电力结构正在为电网带来变革,并需要灵活性来补偿太阳能和风能的间歇性,而太阳能和风能占可再生电力增加的大部分。电力系统改造的载体之一是就地生产所消耗的电力,这可以减少对额外输电容量的需求。由于光伏成本的下降,自用太阳能项目已经变得有利可图,并在过去几年在欧洲得到了长足发展。电池很可能会在几年后追随光伏趋势,而且价格也越来越便宜。目前有几家公司为住宅部门提供将屋顶太阳能电池板与小型电池相结合的太阳能包。面对电力成本上涨,商业、工业或第三产业的较大消费者也可以从当地生产的廉价能源中受益。本研究重点关注法国,那里的电价是可以承受的,但由于价格上涨和波动,现在提出了电池在当地消费量增加的情况下的盈利问题。我们试图开发一种对供应商和消费者都有利的能源即服务商业模式,以克服电池高投资成本和技术复杂性的障碍。所研究的电池用例是增加自用和负载转移。它们被比较以确定法国第三产业消费者的光伏加储能项目的盈利能力。研究发现,在太阳能自用项目中增加电池会略微减少消费者电费的年度净节省。然而,它增加了 2% 到 8% 的自给率。另一个结论是,电力的零售价格是电池盈利能力中最重要的因素。因此,在当前政策下,电表后储能项目的盈利能力依赖于不稳定和高电价。
人体数字孪生 (HDT) 是一个新兴概念,有可能为工业 5.0 创建以人为本的系统。该概念已迅速传播到新的应用领域,最显著的是医疗保健,导致概念解释出现分歧。本系统文献综述分析了所有应用领域对 HDT 的概念理解,以阐明概念基础。我们的综述揭示了一个共识,即 HDT 的孪生实体是一个人类个体。然而,对于个人与其 HDT 之间的数据流几乎没有共识。我们通过根据数据集成级别提出三个类别来解决这一缺点:人体数字模型、人体数字阴影和人体数字孪生。最后,我们将我们的研究结果综合到一个与领域无关的 HDT 一般定义中。我们重点介绍了一种极端情况,即孪生实体是人类个体与强耦合技术系统,并将其命名为增强人类数字孪生 (aHDT)。定义和分类方案为跨学科协作解决开放挑战提供了所需的概念清晰度。显著的挑战是感知人类数据、可靠的数据传输和建模,尤其是行为建模。有关安全、隐私和同意的其他道德问题是成功采用 HDT 的关键。我们呼吁跨学科努力建立标准化框架和道德准则,以促进未来发展。
摘要 提出了一种用于快速检测IGBT去饱和短路的自适应消隐时间(SABT)电路。在IGBT正常开通或发生负载故障(FUL)时,通过检测IGBT集电极-发射极电压V CE 的变化来实现消隐时间的确定;而当IGBT发生硬开关故障(HSF)时,通过检测栅极电压V GE 来确定消隐时间。利用UMC 0.6μm 700V工艺进行仿真表明,提出的SABT电路能够快速检测FUL和HSF。与传统消隐时间电路相比,SABT电路可以将FUL的故障检测时间从1.3μs缩短到35.5ns,而HSF条件下的故障检测时间从2.329μs缩短到294ns。 关键词:消隐时间,IGBT,去饱和短路保护 分类:功率器件与电路
[方法] 通过将I-PpoI STOP/+小鼠与Cre ERT2/+小鼠杂交产生ICE小鼠。这些老鼠被给予他莫昔芬。
化学和生物学的水污染物的复杂性需要有效且可行的治疗方法。在此,使用氮化碳催化剂的光催化臭氧处理有效地用于消除靶向化学污染物的混合物,以及在实际的次级含水量中的大肠杆菌细菌和人类多瘤病毒JC(JC病毒)。在使用尿素和三聚氰胺作为前体制备的催化剂中比较了去角质处理。物理治疗没有明显增强基于尿素的催化剂,而三聚氰胺基(36MCN)材料的结构的改善和MELEM异质结的形成增加了其催化特性。在两组污染物中,光催化的臭氧化系统都优于光解臭,尤其是在臭氧消耗方面。最好的催化剂36mcn,导致消除化学,细菌和病毒污染物所需的臭氧剂量下降57.5%,33.0%和29.0%。羟基自由基还显示为污染物消除的钥匙。臭氧的较高的自由基生产和分解是可能的迹象表明,石墨氮化碳光催化臭氧化的性能更好,这是有效的第三级废水替代方案。
量子密钥分发 (QKD) [1,2] 开创了两个远距离通信方 (通常称为 Alice 和 Bob) 在窃听者 (称为 Eve) 面前共享密钥的全新方式。自第一个 QKD 协议——BB84 协议 [1] 提出以来,QKD 已成为量子信息技术的关注焦点 [3,4]。QKD 的无条件安全性已通过不同方法得到证明 [5–7],该安全性由量子力学定律保证。在传统的 BB84 协议之后,各种类型的新型 QKD 协议相继被提出。其中,高维量子密钥分发 (HD-QKD) 因具有在单个光子上编码多个比特的出色能力以及对信道噪声的强容忍度而备受关注。在高维量子密钥分发系统中,信息被编码在量子态的高维自由度上,如时间能量纠缠[8–10]、时间箱编码[11,12]、路径[13,14]和轨道角动量[15–17]。HD-QKD协议的安全性证明也已建立[18–20]。随着高维量子态制备和测量技术的发展,近年来不同的HD-QKD方案取得了许多突破性的成果[21–23]。其中,基于时间箱的HD-QKD方案[11,23]实现了创纪录的密钥速率,并且可以抵御一般的相干攻击。不幸的是,现实的QKD系统中的实际设备往往存在缺陷,很少符合理论安全模型[24,25]。因此,QKD的理论和实践之间始终存在差距。在过去的几十年里,QKD系统的实用安全性得到了广泛的研究。窃听者可以窃取
到 2017 年底,欧洲航天局 (ESA) 将发射大气激光多普勒仪器 (ALADIN),这是一种在 355 nm 下工作的直接检测多普勒风激光雷达。ALADIN 机载演示器 A2D 是使用真实大气信号验证和优化 ALADIN 硬件和数据处理器进行风检索的重要工具。为了能够验证和测试 ALADIN 的气溶胶检索算法,需要一种从 A2D 检索大气后向散射和消光轮廓的算法。A2D 采用直接检测方案,使用双法布里-珀罗干涉仪测量分子瑞利信号,使用菲索干涉仪测量气溶胶米氏回波。信号由累积电荷耦合器件 (ACCD) 捕获。这些规范使得信号预处理中的不同步骤成为必要。本文描述了从 A2D 原始信号中检索气溶胶光学产品(即粒子后向散射系数 β p 、粒子消光系数 α p 和激光雷达比 S p )所需的步骤。
摘要 — 传统上,电力是由大型发电厂生产的。生产能源的成本与燃料成本(例如碳或天然气)以及维护发电厂的成本有关。随着分布式能源的出现,电力可以由一种新型主体直接在电网边缘生产:产消者。产消者是既消耗又发电的实体,例如通过光伏板。产消者生产的电力成本不再与燃料消耗有关,因为来自分布式发电机的能源基本上是免费的。相反,成本与产消者提供的服务应得的报酬有关。所提出的控制策略在上述情况下将有功发电成本降至最低。控制方案要求产消者测量其电压,然后根据连续时间反馈控制律(实际上是投影梯度下降策略)调整注入的电量。提供模拟以说明算法行为。