b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
摘要。在这项研究中,使用直接的微波辅助技术合成氧化锌纳米颗粒。结果表明,合成的纳米颗粒是六边形的wurtzite Zno纳米颗粒,其结晶石尺寸为6.76 nm,如通过生理化学方法确定。它揭示了在不同的增强型,是不规则的,球形的海绵状结构。使用傅立叶变换红外光谱法,已经观察到ZnO表面上的相应官能团。根据吸收测量值,直接光带隙约为3.29 eV。光致发光光谱可通过寻找红色发射和蓝色带缘发射来检测ZnO晶格中的晶体缺陷。进行了对氧化锌纳米颗粒的抗腐蚀能力的研究,该研究表明,当用镁(MG)底物涂有颗粒时,颗粒具有有益的特征。这些材料被评估,具有有或没有保护性涂层的腐蚀性。结果表明,在不同的电解质条件下,涂层显着提高了保护速率。与裸露的MG板相比,当ZnO纳米颗粒涂覆时,电荷转移电阻R CT增加。
石墨烯具有有希望的物理和化学特性,例如高强度和柔韧性,再加上高电导率和热导率。因此,它被整合到基于聚合物的复合材料中,以用于电子和光子学应用。与石墨烯发育相关的主要约束是,具有强疏水性,几乎所有分散体(通常是其处理和处理所需施用所必需的)都是在有毒的有机溶剂中制备的,例如N-甲基吡咯烷酮或N,N,N-二甲基甲酰胺。在这里,我们描述了如何使用球磨机制备去角质石墨。通过电子显微镜和拉曼光谱法测量,产生的石墨烯平均为三到四层厚,直径约500 nm。可以以光实体的形式存储;并且很容易分散在水性媒体中。我们的方法包括四个主要步骤:(i)有机分子(三聚氰胺)在石墨中的机械化学插入,然后在水中悬浮; (ii)洗涤悬浮石墨烯以消除大多数三聚氰胺; (iii)稳定石墨烯片的隔离; (iv)冻结以获得石墨烯粉末。该过程分别用于水性悬浮液和干粉末的6-7或9-10 d。该产品具有明确的属性,可用于许多科学和技术应用,包括毒理学影响评估和创新医疗设备的生产。
抗逆转,在整个行业面临着重大挑战。这项研究探讨了4-(2-汞1,3,4-氧二唑-5-基)吡啶(MOP)作为HCL溶液中低碳钢的腐蚀抑制剂的潜力。值得注意的是,在1 M HCl中,MOP在最佳浓度为0.5 mm时表现出令人印象深刻的抑制效率。该研究包括全面的分析,包括不同的抑制剂浓度(0.1至1 mm),浸没持续时间(1至48小时)和温度(303至333 K)。腐蚀率定量采用减肥测量。此外,吸附等温线揭示了MOP与低碳钢表面的相互作用。重要的是,密度功能理论(DFT)在原子量表上脱离了复杂的电子和分子相互作用。这些发现强调了MOP的特殊腐蚀抑制能力,使其成为HCL环境中低压钢腐蚀控制的有前途的候选者。从减肥测量,吸附等温线和DFT分析中的综合见解提供了对抑制机制的整体理解,为腐蚀管理中的实际应用打开了大门。prog。色着色剂外套。17(2024),207-226©颜色科学与技术研究所。
摘要:结构明确定义的石墨烯纳米纤维(GNR)是具有独特光电特性的纳米结构。在液相,强聚集通常会阻碍其内在特性的评估。最近,我们报道了一种新型的GNR,并用脂肪族侧链装饰,产生的分散体主要由孤立的GNR组成。在这里,我们采用二维电子光谱来阐明分离的GNR的光学特性,并阐明其宽阔且无特征的吸收带的过渡。我们观察到通常在建模中忽略的振动耦合在GNR的光学特性中起主要作用。此外,通过电子过渡的大型不均匀扩大,揭示了强烈的环境效应。最后,我们还表明,在150 fs的时间尺度上,光激发的明亮状态衰减达到了一个黑暗状态,该状态与亮状态保持在热平衡状态,该状态仍然负责纳米秒时尺度上的发射。关键字:石墨烯纳米纤维,超快光谱,二维电子光谱,不均匀扩展,振动耦合
摘要:结构明确定义的石墨烯纳米纤维(GNR)是具有独特光电特性的纳米结构。在液相,强聚集通常会阻碍其内在特性的评估。最近,我们报道了一种新型的GNR,并用脂肪族侧链装饰,产生的分散体主要由孤立的GNR组成。在这里,我们采用二维电子光谱来阐明分离的GNR的光学特性,并阐明其宽阔且无特征的吸收带的过渡。我们观察到通常在建模中忽略的振动耦合在GNR的光学特性中起主要作用。此外,通过电子过渡的大型不均匀扩大,揭示了强烈的环境效应。最后,我们还表明,在150 fs的时间尺度上,光激发的明亮状态衰减达到了一个黑暗状态,该状态与亮状态保持在热平衡状态,该状态仍然负责纳米秒时尺度上的发射。关键字:石墨烯纳米纤维,超快光谱,二维电子光谱,不均匀扩展,振动耦合
Niobate已在光电子中被商业使用。它特别有利,因为其高二阶非线性和宽阔的透明度窗口从近紫外线延伸到中期。1,2,3得益于最近的微加工的最新进展,薄膜硅锂(TFLN)现在可以直接以硅盒顶部的波导形式进行图案,从而在整个设备中实现了强烈的引导光。4,5据报道,在最新设备中,图案化的TFLN波导中的传播损失小于<0.1dB/cm。6,7,8除了其电形性能,第二阶和三阶的高非线性,以及低损失的结合,还承诺了能够提供高效率非线性频率产生的优质光子积分电路(PIC)平台。在这项工作中,在TFLN波导中研究了二阶三波混合过程,尤其是第二次谐波产生(SHG)及其在制造波动方面的公差边缘。
1田纳西州纳什维尔大学范德比尔特大学分子生理与生物物理学系。11 2肌肉能量实验室,NHLBI,NIH,贝塞斯达,马里兰州,20892年,美国。12 3宾夕法尼亚州立学院宾夕法尼亚州立大学生物化学与分子生物学系,宾夕法尼亚州立大学13号宾夕法尼亚州立大学生命科学研究所,14 4 4 4 4美国爱荷华州爱荷华大学,爱荷华州,爱荷华州,爱荷华州52242,美国52242。15 5美国密苏里州圣路易斯华盛顿大学医学院医学系。 16 6加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学。 17 7田纳西州纳什维尔范德比尔特大学医学中心病理学系,美国37232。 18 8约翰·霍普金斯大学医学院病理学系,美国马里兰州巴尔的摩199 9 9儿科部门。 ,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。 22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。 24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。 25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。 27 2815 5美国密苏里州圣路易斯华盛顿大学医学院医学系。16 6加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学。17 7田纳西州纳什维尔范德比尔特大学医学中心病理学系,美国37232。18 8约翰·霍普金斯大学医学院病理学系,美国马里兰州巴尔的摩199 9 9儿科部门。,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。 22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。 24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。 25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。 27 28,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。27 28
摘要铜在各个领域的材料的应用被广泛认可。然而,在酸性环境中,铜的电和机械性能经历了负变化,从而导致其溶解。为了保护铜免受降解,最有效的方法是采用抑制剂。因此,在本文中,已将过期的布洛芬药物作为铜的腐蚀抑制剂进行了研究,该抑制剂在0.5 m H 2 So 4中,采用体重减轻和电化学测试。与该领域其他研究人员使用的药品相比,结果表明,布洛芬在保护铜免受腐蚀方面非常有效。注意到,布洛芬的抑制作用随着浓度而增加。此外,发现其吸附遵循langmuir等温线。