图1。反射的共聚焦显微镜原理,用于测量气道上皮培养物上的ASL高度。a:激光束的示意图通过在空气液体界面上生长的差异气道上皮层,并在每个界面反射的光的一部分随着折射率反转,以反转其传播方向。为了清楚起见,反射信号与激光光分开描述。FEP:氟化乙烯丙烯。 b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。 箭头标志着从荧光强度的以下线曲线中取出的位置。 中反射光的峰FEP:氟化乙烯丙烯。b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。箭头标志着从荧光强度的以下线曲线中取出的位置。
共价有机框架(COF)和金属有机框架(MOFS)是两种新兴的延长多孔结构,试图开发分子以外的网状化学,并为组成,结构,结构,性能和应用开放新的视野(Yaghi,2019; Yaghi,2019; Lyu et et lyu等。像将无机金属复合物扩展到2D和3D框架的MOF一样,COF将有机化学从分子和聚合物扩展到2D和3D有机结构(Diercks和Yaghi,2017)。MOF/COF的建造旨在通过拓扑指南(基于含金属的单位有机连接器/有机有机有机单体)之间通过牢固的键(坐标/共价相互作用)扩展多孔框架(坐标/共价相互作用)。这些方法的优点包括可控的合成,可设计的结构和可管理的功能(Geng等,2020)。除了具有高表面积和可调孔外,MOF和COF还显示出许多有趣的特性,包括通过π -π堆积和高稳定性的分层晶体结构和高稳定性,这仅在Graphene(Fritz and Coskun,2020年)中显示出由于存在强大的共振键。然而,无金属的COF远非满足众多领域的不断增长的需求,在这种情况下,金属在框架结构中的作用被强调。这包括诸如气体吸附和分离,异质催化,电子,电催化和电化学能量存储等应用。应对这些挑战的有效方法是将靶向金属离子引入COFS框架中以形成金属共价有机框架(MCOFS)(Dong等,2020)。与无金属COF相比,MCOF不仅具有上电催化活性,而且由于金属成分的参与而显示出更高的内在传导。开发独特的综合方法/策略来实现新颖的MOF,而COFS在促进其应用方面具有很大的希望。例如,通过液体液体界面聚合在室温和大气压下通过液体界面聚合制备灵活和独立的纯COF膜,这解决了一个主要问题,因为COF通常是无法解决的且无法实现的粉末(Liu等,2020)。已经有大量有机单体在其产生的结构中有效的功能化可能性。这导致基于实验室机器人和人工智能(AI)(AI)的“数字网状化学”,可以实现涉及合成和表征的高吞吐量实验。这种方法有望使MOF和COF中的发现更加重要,更容易实现(Lyu等,2020)。自1962年第一份报告使用葡萄糖氧化酶检测葡萄糖以来,电化学传感已被很好地接受为一种强大的工具,在各种领域中,需要高灵敏度,简单的操作,快速反应和低成本。电化学传感特别适合小型化,因此为制造灵活,一次性和廉价设备提供了多种施工优点(Amiri等,2018)。将新型元素引入MOF和COF为电化学传感带来了增强的范围,这有望促进其合成。
配体在uences中纳米生物界面的热电导率,改变了NP周围发展的温度。因此,调整NP配体组成以实现NP表面所需的温度升高,并限制对健康组织的损害,10是nal设计和利用生物医学中等离子体涂层NP的最终目标。在NP表面的温度pro的直接实验测量很具有挑战性,并且通过聚合物或量子点与NP的临时结合尝试了它。11,12一种不太直接的方法在于通过光泵和探针技术(例如时间域热剂)测量界面热电导,例如时间域热率,o ge e e EN应用于扩展表面。已经表明,配体层的存在相对于与溶剂接触的裸露固体表面增强了热导率。13 - 15 Braun和Cahill 16 - 18的开创性作品表明,界面有吸引力对涂层配体层的疏水性或亲水性的依赖性。18溶剂的性质,17金属表面19的偶联键的密度以及将液体与固体20分开所需的粘附功能是所有因素,这些因素已显示出影响的导热率。有一个普遍的共识,即在存在三组分界面的情况下,即金属 - 配体 - 溶剂,配体 - 溶剂 - 溶剂界面,具有最大的热耐药性,21因此在传热机制的研究中起着重要作用。但是,该界面不能分类为理想的固体 - 液体或液体 - 液体界面,而是严格保留了so物质
与经典的血脑屏障通道相比,抽象的鼻子到脑递送提出了一种有希望的替代途径,尤其是用于递送高分子量的药物。通常,大分子在生理环境中迅速降解。因此,可以使用纳米标志系统来保护生物分子免受过度降解。此外,由于特定的结合和较长的停留时间,靶向纳米颗粒表面上的配体能够改善生物利用度。在这项工作中,转铁蛋白装饰的壳聚糖纳米颗粒用于评估模型蛋白在体外通过鼻上皮屏障的通过。已证明,促进的叠氮化叠氮化物 - 烷基环加成反应可用于将功能组连接到转铁蛋白和壳聚糖,在壳聚糖纳米颗粒制备后,在轻度反应条件下,在轻度反应条件下可以快速共价表面缀合。通过SDS-PAGE和SPR测量确认了转铁蛋白及其结合效率的完整性。产生的转铁蛋白装饰纳米颗粒的大小约为110-150 nm,表面电势为正。纳米颗粒的表面结合配体的最高量也显示出最高的细胞摄取到人鼻上皮细胞系中(RPMI 2650)。在与胶质母细胞瘤细胞(U87)的空气 - 液体界面共培养模型中,转铁蛋白充分的纳米颗粒显示出更快的通过上皮细胞层的通过,并增加了细胞对胶质母细胞瘤细胞的摄取。这些发现证明了特定靶向配体的有益特征。使用这种化学和技术配方概念,在纳米颗粒形成后,可以将多种靶向配体连接到表面,同时保持货物完整性。
过去十年,增材制造(又称光聚合 3D 打印)取得了显著进步,使修复牙科的数字化制造成为可能。[1] 如今,3D 打印在牙科领域的应用包括牙科模型、手术导板、透明矫正器、夜间护齿器和夹板。[2,3] 构建精度和资源效率都得到了提高。[4] 立体光刻、数字光处理 (DLP) 和连续液体界面生产等现代 3D 打印技术利用了光聚合,并使用在紫外线照射下发生自由基链增长聚合的树脂。[1] 通常,将不同的光反应性(甲基)丙烯酸酯单体混合在一起形成配方,以定制材料特性。[5] 低树脂粘度(0.1 和 1.3 Pa s)是光聚合 3D 打印应用的主要要求,而光喷射需要的粘度甚至更低,约为 0.01 Pa s。通常会添加反应性稀释剂来降低配方的粘度。[6] 此外,为了设计机械性能,还会使用(甲基)丙烯酸酯功能低聚物。它们可分为三大类,即聚酯(甲基)丙烯酸酯、丙烯酸低聚聚氨酯和环氧丙烯酸酯。[7] 配方中经常含有双酚 A (BPA) 衍生物,例如 2,2-双[4-(2-羟基-3-甲基丙烯酰氧丙基)-苯基]丙烷,也称为双酚 A 甲基丙烯酸缩水甘油酯 (BisGMA)。加入基于 BPA 的刚性芳香族结构可使材料具有高刚度和高玻璃化转变温度,而 BisGMA 的侧链羟基可使其对玻璃、骨骼或牙釉质表面具有良好的粘附性。[8] 这些特性,再加上低固化收缩率,使得 BisGMA 广泛应用于牙科修复材料和热固性材料中。 [9] 尽管如此,使用双酚 A 基树脂也应受到严格审查,因为一些结果表明,双酚 A 的释放要么来自单体杂质,要么来自聚合物降解。[10] 由于 BPA 具有类似雌激素的特性,因此使用基于 BPA 的树脂
1.zheng W#,Yamada SA#,Hung St,Sun W,Zhao L,Fayer MD。增强了介孔二氧化硅中的Menshutkin SN2反应性:表面催化和限制的影响。美国化学学会杂志,2020,142(12):5636-5648。2.MA,Z.,Zheng,W。*,Sun,W。*,Zhao,L。通过甲基功能性[N1,1,1,1] [C10SO4]添加剂增强H2SO4催化的C4烷基化的C4烷基化。AICHE Journal,2023,E18179。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。 AICHE Journal,2022,68(7),E17698。 4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。 AICHE Journal,2022,68(4),E17556。 5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。 AICHE期刊。 2021,67(10):E17349。 6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。AICHE Journal,2022,68(7),E17698。4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。AICHE Journal,2022,68(4),E17556。5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。AICHE期刊。2021,67(10):E17349。6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。6.Zheng W,Sun W,Zhao L等。了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。AICHE Journal,2018,64(3):950-960。7.Zheng W#,Liu C#,Wei X等。使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。化学工程科学,2023,267:118329。8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。化学工程科学。2022,247:117024。9.zheng W,Sun W,Zhao L,Qian F.建模由疏水二氧化硅纳米孔中的甲基咪唑的固体/液体界面特性。化学工程科学。2021,231:116333。10.Zheng W,Sun W,Zhao L等。 了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。 化学工程科学,2019,205:287-298。 11.zheng W#,Cao Piao#,Sun W,Zhao L等。 用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。 化学工程杂志。 2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。10.Zheng W,Sun W,Zhao L等。了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。化学工程科学,2019,205:287-298。11.zheng W#,Cao Piao#,Sun W,Zhao L等。用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。化学工程杂志。2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。2019,377:119578。12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。12.Zheng W,Sun W,Zhao L等。使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。化学工程科学,2018,186:209-218。13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。13.Zheng W,Sun W,Zhao L等。基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。化学工程科学,2018,183:115-122。14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。14.Zheng W,Sun W,Zhao L等。使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。化学工程科学,2017,166:42-52。15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。15.Zheng W,Sun W,Zhao L等。通过离子液体微乳液对纳米级金属有机框架的可控制备。工业与工程化学研究,2017年,第56(20):5899-5905。16.Zheng W,Zhao L,Sun W,QianF。了解纳米级硅孔中甲基咪唑的限制效应和动力学。物理化学杂志C. 2021,125(13):7421-7430。17.Wang Z#,Zheng W#,Li B等。在共价有机框架中限制了离子液体,朝着高安全锂金属电池的合理设计。化学工程杂志,2022,433:133749。