视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。
摘要 p 共轭分子的受控自组装是一种被广泛接受的优化有机光电子性能的方法。特别是,定向组装可在外部刺激下提供精确组织的 p 共轭单元。支链烷基链的连接不仅调节这些组装过程,而且还隔离 p 核心,如在烷基-p 功能分子液体 (FML) 中观察到的那样。本综述重点介绍了烷基-p FML 的最新进展、其分子设计原理以及通过化学添加剂和物理刺激实现其定向组装的方法。它还介绍了烷基-p FML 中无序到有序的转变如何导致光致发光改变以及这些刺激驱动的组装结构的其他固有优势,这些结构构成了刺激响应软材料领域的新范式及其在软电子学中的应用。
摘要:在散装的声学设备中,传统上,用于流体和微粒处理的声音共振模式在散装压电(PZE)换能器传统上受到激发。在这项工作中,通过三个维度的数值模拟进行了证明,这些模拟集成了PZE薄纤维胶片传感器,构成少于散装设备的0.1%的换能器,同样良好。使用经过良好测试且经过实验验证的数值模型进行模拟。嵌入在MM大小的散装玻璃芯片中的水上填充的直流通道,其用Al 0.6 SC 0.4 N制成的1- l m thick薄纤维传感器作为概念验证示例。计算了声能,辐射力和微粒聚焦时间,并证明与传统的散装硅玻璃设备相媲美,由大量的铅链氨基二硝酸盐传感器所代理的硅玻璃设备。薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。 因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。 v C 2021作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1121/10.0005624薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。v C 2021作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0005624https://doi.org/10.1121/10.0005624
一种液体排斥表面,即光滑液体注入多孔表面(SLIPS),通过动态液体/液体/蒸汽接触线运动来排斥液体。[6] 所需的光滑液体必须与接触的液体介质不混溶且不会被其浸出,以避免润滑剂损失和污染。确保此类涂层的长期坚固性及其润湿性能仍然具有挑战性。[7] 因此,需要其他方法来创建具有良好液体排斥性的表面。提出了一种替代策略,即将柔性大分子刷(如 PDMS 和全氟聚醚)共价连接到光滑表面上以排斥液体。[8] 这个想法是,柔性大分子的高流动性使它们能够作为具有广泛表面张力的液体的液体状润滑层。[8c] 由于与表面的共价连接,这些分子结构不会被接触液体溶解或取代。具体而言,涂覆有PDMS刷的表面表现出优异的耐高温处理、光降解甚至刮擦性能。[8a,9] 此外,由于涂层只有几纳米厚,它们是透明的,不影响涂层表面的外观,对导热性影响也很小。PDMS刷的制备可以追溯到1970年,当时Vermeulen等人通过气相反应16小时在玻璃表面沉积了低液体粘附性的PDMS刷层。[10] 然而,从表面接枝聚合物通常基于复杂且耗时的制备程序,限制了它们在实际应用中的使用。McCarthy等人系统地研究了在表面制造PDMS刷的新策略。[11] 他们提出使用二甲基二甲氧基硅烷(DMDMS)作为单体,在硫酸作为催化剂的情况下聚合PDMS刷。 [8a] 用大量溶剂冲洗表面以去除残留的低聚物和酸,将反应溶液(包括 DMDMS、硫酸和异丙醇)干燥一段时间后,在硅(或玻璃)表面形成具有低液体粘附性的 PDMS 刷。与 McCarthy 的方法相比,我们开发了一种更简单的方法,无需催化剂即可将 PDMS 刷接枝到表面上。此外,我们还表征了 PDMS 刷在胶带剥离、超声处理、滴落滑动腐蚀、加热、紫外线降解、酸腐蚀等条件下的稳定性。McCarthy 等人仅研究了在 100°C 下加热的影响。
免责声明本报告是作为美国政府机构赞助的工作的帐户。美国政府,其任何机构,或其任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或实用性承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用将不会侵犯私人拥有权利。将其引用在任何特定的商业产品,流程或服务中,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。其中表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和观点。本报告中的所有图像均由Netl创建,除非另有说明。
传感器和反应。[6]这种方法需要纳米级操纵,并了解有关生物聚合物运输的物理学的理解。尽管研究和设计不同的几何几何限制[7] 探究了运输过程的各个方面,但通过人工纳米渠道的生物聚合物传输现象的基本面尚未完全解决。 一个挑战是纳米级运输过程中涉及的众多力量。 分子转运是由生物聚合物经历的熵,电渗和电泳力的相互作用驱动的。 [7-12]例如,纳米限制诱导的熵屏障阻碍了由电泳力驱动的大型DNA聚合物线圈的插入,这些线圈驱动到较小的纳米孔中,而纳米孔和chan-可能与天然生物学通道和泊松的长度尺度一样小。 另一个挑战在于模仿光滑且原子上精确的表面,这将使研究人员能够将固有的聚合物行为从表面相互作用中解散。 [13]硝酸硅/氧化硅的基础岩石已被广泛用于纳米流体通道以转移生物聚合物,但它们患有明显的(纳米含量很少的均方根(RMS))表面粗糙度和不均匀表面。 [14–16]尝试使用碳纳米管(CNT)(CNT),具有光滑的内表面,面部挑战探究了运输过程的各个方面,但通过人工纳米渠道的生物聚合物传输现象的基本面尚未完全解决。一个挑战是纳米级运输过程中涉及的众多力量。分子转运是由生物聚合物经历的熵,电渗和电泳力的相互作用驱动的。[7-12]例如,纳米限制诱导的熵屏障阻碍了由电泳力驱动的大型DNA聚合物线圈的插入,这些线圈驱动到较小的纳米孔中,而纳米孔和chan-可能与天然生物学通道和泊松的长度尺度一样小。另一个挑战在于模仿光滑且原子上精确的表面,这将使研究人员能够将固有的聚合物行为从表面相互作用中解散。[13]硝酸硅/氧化硅的基础岩石已被广泛用于纳米流体通道以转移生物聚合物,但它们患有明显的(纳米含量很少的均方根(RMS))表面粗糙度和不均匀表面。[14–16]尝试使用碳纳米管(CNT)(CNT),具有光滑的内表面,面部挑战
我们研究了在一系列实验相关几何中通过 Kitaev 量子自旋液体 (QSL) 屏障隧穿的光谱特征。我们结合了弹性和非弹性隧穿过程的贡献,发现在流动自旋子模式下的自旋翻转散射会导致隧穿电导谱的间隙贡献。我们讨论了在将候选材料 α -RuCl 3 驱动到 QSL 相时产生的磁场中出现的光谱变化,并提出了横向 1D 隧道结作为此范围内的可行设置。特征自旋间隙是分数化 QSL 激发的明确特征,可将其与磁振子或声子区分开来。我们讨论了将我们的结果推广到具有间隙和无间隙自旋相关器的各种 QSL。
2010 年,Sorgic 和 Radakovic [8] 对浸没在矿物油中的变压器进行了二维模拟,以将冷却系统与油驱动和强制油配置进行比较。2012 年,Tsili 等人建立了一种方法来开发三维模型并预测热点的温度 [9]。这一年,Skillen 等人对一个不对称非等温流二维模型进行了 CFD 模拟,以表征具有锯齿形冷却的变压器绕组中的油流 [10]。2014 年,Yatsevsky 对浸没在自然对流油中的变压器进行了二维模拟,包括铁心、油箱和散热器,以预测热点。所开发的模型表现出良好的性能,并通过实验进行了验证 [11]。最近,Torriano 等人在一种采用自然对流冷却(ON)的比例盘式电力变压器中开发了三维传热模型 [12]。
摘要 NASA HR-1 是一种高强度 Fe-Ni 高温合金,旨在抵抗高压、氢环境脆化、氧化和腐蚀。NASA HR-1 最初由 NASA 于 1990 年代开发,源自 JBK-75,旨在提高高压氢环境中的强度和延展性。NASA HR-1 的化学配方旨在满足液体火箭发动机应用的要求,特别是在高压氢环境中使用的部件。最近使用增材制造 (AM) 的发展使这种材料成为快速分析和制造推进技术 (RAMPT) 计划下的通道冷却喷嘴和其他液体火箭发动机部件应用的有吸引力的选择。RAMPT 计划已确定基准,以全面发展和表征 NASA HR-1 材料。NASA HR-1 满足液体火箭发动机部件的材料要求,包括良好的抗氢性、高导电性、良好的低周疲劳性能以及高热通量环境中通道冷却喷嘴的高伸长率和强度。初步开发和特性描述已完成,使用吹粉定向能量沉积 (DED) 和激光粉末床熔合 (L-PBF) 增材制造技术开发材料测试样品和喷嘴硬件。NASA HR-1 粉末已从多家粉末供应商处采购并进行了特性描述,一系列开发和硬件样品已使用 DED 和 L-PBF 完成制造。材料特性描述包括热处理开发、金相学、化学评估、机械测试、热物理性能测量以及相关喷嘴硬件的制造以证明可行性。本文介绍了该工艺和早期材料开发的结果,并提供了包括硬件制造在内的未来开发工作。