第 1 章 前言(实施背景和内容) 日本的 LPG 需求量在 1996 年达到峰值 1,971 万吨,随后在 2019 年下降至 1,393 万吨(减少了 578 万吨,降幅为 -29%)。下降的原因主要有两个:全电气化家庭的兴起和节能燃气设备上市。但也应当注意,随着公共和私营部门对保护全球环境以及通过减少 LPG 等化石燃料的 CO 2 排放来解决这个问题的意识不断增强,LPG 的需求已开始下降。近年来,日本政府(以下简称“日本政府”)发布的“战略能源计划”或“巴黎协定长期战略”等已明确表明了将可再生能源定义为主要电力来源的政治方向。事实上,通过开发革命性技术并克服未来潜在的挑战(如配电网或电力储存),扩大可再生能源电力的利用率是可能的。然而,风险仍然很高。为了实现低碳(或脱碳)社会,在推行可再生能源政策的同时,还必须有效利用现有能源。不可否认的是,液化石油气是一种化石燃料,但它具有出色的环保性能和强大的恢复能力,作为“灾难发生时的最后手段”发挥着重要作用。液化石油气的特殊优势在过去的灾难中得到了充分体现,例如 2011 年日本东部大地震。液化石油气是一种可以在全国任何地方轻松便捷地获取的能源。此外,由于其恢复能力,液化石油气已经确立了作为分散能源的竞争力,供应链在灾难发生时可以比其他主要能源更快地恢复。此外,日本各地都有可靠而强大的供应网络。因此,从日本能源安全的角度来看,液化石油气比其他能源更优越。日本液化石油气协会(以下简称“JLPGA”)于 2018 年 11 月发布了 2025 年液化石油气愿景,其中详细说明了有关需求扩大、稳定供应、改善配送系统、安全、环境、质量控制等方面的中长期方针。这一愿景强调了液化石油气参与者不仅要追求“数量(销售量)”,还要寻求“质量”改进(例如对环境政策的贡献),以帮助实现可持续发展的社会并加强我们的灾难应对能力。这强调了关键责任,和参与该行业的 LPG 参与者的骄傲,并使该行业能够追求可持续发展的社会,而 LPG 是一个明智的选择,不仅是因为环境效益,还因为 LPG 可以为社会优先事项做出贡献。我们选择了可持续发展目标 (SDG),它融合了环境、技术创新、弹性和可持续性等多个视角,作为客观评估 LPG 的普遍可用性(例如多功能性和便携性)及其在未来不变的重要作用的公平标准。因此,在 LPG 行业的复杂环境下,采用 SDG 将是我们向公众解释 LPG 现状的最合适的方法和途径。除了这些论点之外,LPG 行业还必须阐明 LPG 在帮助实现某些 SDG(例如稳定的能源供应、创新、弹性和环境)方面可以发挥的作用。作为提高公众对 LPG 普遍可用性认识工作的一部分,我们决定撰写和发布此声明。最后,我们要感谢株式会社久观协综合研究所在编写本报告时提供的宝贵建议和支持。
限制空间是一个足够大的房间,具有以使工人可以进入并在其中工作的方式具有配置。在船舶维修过程中,在狭窄的空间区域中进行操作并不少见。这项研究首先通过将船舶上的有限空间的特征分组为封闭空间的七个风险类别,从而确定船上的有限空间的特征。然后通过解释风险的组成部分,包括危害,危险工作,危险事件以及可能发生的后果,进行风险识别。之后,在以矩阵形式提出的船上维修中进行了在狭窄的空间中进行的最初风险评估。之后,进行了风险控制,并通过继续先前制作的矩阵来进行船舶维修的限制空间中热门工作的最终风险重新评估。在最后阶段,使用Bowtie方法进行了分析,以分析这些风险的原因,影响和控制。
可放松的Assura nce是Suran ce的高度,但与ISO 140643:2019的审计相关的审计并不是guar antee,当它存在时始终会检测到物质错误的陈述。与合理的保证相比,在有限的保证水平上执行的程序在性质和时机上有所不同,并且范围较小,而合理的保证是高度的保证。错误陈述是金额或披露的差异或遗漏,并且可能是由于欺诈或错误引起的。错误陈述被认为是重要的。温室气体定量因用于确定排放因子的不完整科学知识以及结合不同气体排放所需的值而受到固有的不确定性。- 与验证意见有关的生物质,液化石油,电力,商务旅行,学生航空旅行和食品购买的结盟已提高以下资格:
如果有促进研发活动和进一步生产资料的监管框架支持,可再生液化气将提供一条长期、经济有效的途径,减少交通运输和农村供暖等难以脱碳行业的碳排放和空气污染物排放。与煤炭、取暖油、柴油和汽油等传统高碳燃料相比,液化石油气是最清洁的燃料之一。从燃油锅炉改用液化石油气可减少二氧化碳排放量(使用液化石油气时)高达 55%,使用生物液化石油气时高达 83%。2此外,与其他能源相比,来自化石和可再生能源的液化石油气在减少空气污染方面具有巨大的潜力。与固体和液体燃料锅炉(如煤、取暖油、泥炭和生物质)相比,使用液化石油气的锅炉可减少 80-99% 的 PM 排放和 50-75% 的 NOx 排放。液化石油气汽车几乎没有其他有害空气污染物排放。
关键假设 • 迈向全民用电 - 到 2030 年,马拉维的目标是将电力覆盖率从目前的 25.9% 提高到 70%。这将需要总共新增 115 万个并网连接和 155 万个离网连接。 • 清洁烹饪 - 目标是每年分发 146,000 个先进的柴炉,到 2030 年每年允许使用 117,000 个液化石油气炉、53,000 个电炉、80,000 个沼气炉和 40,000 个乙醇/石蜡炉,从而为 75% 的家庭提供更清洁的烹饪解决方案。这将意味着将 38% 的人口从多层框架 (MTF) 的 0 级迁移出来。 • 可再生能源——该协议旨在到 2030 年将包括水电在内的可再生能源在能源结构中的占比从 90% 提高到 96%,从而将碳基准排放量从 1,000 kTCO2E 减少到 4,090 kTCO2E。
bbls桶gwh gigawatt-kt kt kt kt ktoe ktoe千吨油量kWh千瓦时千瓦时千瓦时mmbtu mmbtu mmbtu百万英国英国热热单元mw megawatt tbtu tbtu tbtu tbtu trillion tbtu themeral tco2 tco2吨液化石油气液化石油气体RFO残余燃油区。SPV Distributed Solar PV FEC Final Energy Consumption TES Total Energy Supply TFC Total final consumption W2E Waste-to-Energy ECG Electricity Company of Ghana EPC Enclave Power Company Ltd GNGC Ghana National Gas Company GNPC National Petroleum Corporation GRIDCo Ghana Grid Company GSS Ghana Statistical Service NEDCo Northern Electricity Distribution Company NPA National Petroleum Authority PURC Public Utilities监管委员会Valco Volta铝公司VRA VORTA河管理局WAGP西非天然气管道WAPCO WAPCO西非天然气管道公司
1。Neetu Singh,Prabhat Kumar Singh,Anuradha Shukla,Satyendra Singh,Poonam Tandon,“氧化镁的合成和表征:固态密度功能理论计算的洞察力”,《无机和有机和有机物质的杂志》,《杂志26,1413-1420,2016,Springer [影响因素:3.9] 2。 Neetu Singh,Prabhat Kumar Singh,Mridula Singh,Poonam Tandon,Saurabh Kumar Singh和Satyendra Singh,“多苯胺/MOGO(30%)(30%)和多苯胺/MGO(40%)NanoComposise(40%)NanAnocosists Nananocomposs的材料的材料,材料的材料综合综合: 30,4487–4498(2019),施普林格[影响因子:2.8] 3。 Neetu Singh,Prabhat Kumar Singh,Mridula Singh,Debraj Gangopadhyay,Saurabh Kumar Singh,Poonam Tandon,“基于Pani -Co 3 O 3 O 4纳米复合材料的潜在LPG传感器的开发”,新的化学杂志,第1卷。 43,17340(2019),皇家化学学会[影响因素:2.7] 4。 Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Poonam Tandon,Saurabh Kumar Singh,“准备纳米结构的Co 3 O 4和Rudoded Co 3 O 4及其在液化石油燃气感应中的适用性”,《材料工程和性能杂志》,第1卷。 28,7592-7601(2019),Springer [影响因子:2.2] 5。 Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Saurabh Kumar Singh,Poonam Tandon,“ d Ru掺杂Zno(Xru:Xru:Zno 1%≤x≤5%)的不同百分比的表征,作为LPG在室温下的潜在材料。26,1413-1420,2016,Springer [影响因素:3.9] 2。Neetu Singh,Prabhat Kumar Singh,Mridula Singh,Poonam Tandon,Saurabh Kumar Singh和Satyendra Singh,“多苯胺/MOGO(30%)(30%)和多苯胺/MGO(40%)NanoComposise(40%)NanAnocosists Nananocomposs的材料的材料,材料的材料综合综合:30,4487–4498(2019),施普林格[影响因子:2.8] 3。Neetu Singh,Prabhat Kumar Singh,Mridula Singh,Debraj Gangopadhyay,Saurabh Kumar Singh,Poonam Tandon,“基于Pani -Co 3 O 3 O 4纳米复合材料的潜在LPG传感器的开发”,新的化学杂志,第1卷。43,17340(2019),皇家化学学会[影响因素:2.7] 4。 Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Poonam Tandon,Saurabh Kumar Singh,“准备纳米结构的Co 3 O 4和Rudoded Co 3 O 4及其在液化石油燃气感应中的适用性”,《材料工程和性能杂志》,第1卷。 28,7592-7601(2019),Springer [影响因子:2.2] 5。 Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Saurabh Kumar Singh,Poonam Tandon,“ d Ru掺杂Zno(Xru:Xru:Zno 1%≤x≤5%)的不同百分比的表征,作为LPG在室温下的潜在材料。43,17340(2019),皇家化学学会[影响因素:2.7] 4。Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Poonam Tandon,Saurabh Kumar Singh,“准备纳米结构的Co 3 O 4和Rudoded Co 3 O 4及其在液化石油燃气感应中的适用性”,《材料工程和性能杂志》,第1卷。28,7592-7601(2019),Springer [影响因子:2.2] 5。 Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Saurabh Kumar Singh,Poonam Tandon,“ d Ru掺杂Zno(Xru:Xru:Zno 1%≤x≤5%)的不同百分比的表征,作为LPG在室温下的潜在材料。28,7592-7601(2019),Springer [影响因子:2.2] 5。Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Saurabh Kumar Singh,Poonam Tandon,“ d Ru掺杂Zno(Xru:Xru:Zno 1%≤x≤5%)的不同百分比的表征,作为LPG在室温下的潜在材料。126,Springer [影响因子:2.5] 6。Prabhat Kumar Singh,Neetu Singh,Mridula Singh,Saurabh Kumar Singh,Poonam Tandon,“纳米结构的MGO和Zn掺杂MGO的制造是可在室温下运行的有效LPG传感材料”,应用物理学A(2021),第1卷。126,Springer [影响因子:2.5] 7。 Mridula Singh,Neetu Singh,Prabhat Kumar Singh,Saurabh Kumar Singh,Poonam Tandon,“开发126,Springer [影响因子:2.5] 7。Mridula Singh,Neetu Singh,Prabhat Kumar Singh,Saurabh Kumar Singh,Poonam Tandon,“开发
ARC/INFO - ESRI 开发的地理信息系统软件 D - 日 EPA - 美国环境保护署 ESRI - 环境系统研究所,Inc. FGDC - 联邦地理数据委员会 FIPS - 联邦信息处理标准 GIS - 地理信息系统 GW - 地下水 ITFM - 美国水质监测跨部门工作组 LAB - 实验室 LP - 液化石油 M - 分钟或米 MAX - 最大值 MIN - 最小值 MSDE - EPA 地下水质量最小数据元素集 N - 数字 NAD - 北美基准(水平) NGVD - 国家大地测量垂直基准 NIST - 国家标准与技术研究所(前身为国家标准局) NRCS - 国家资源保护局(前身为美国土壤保护局) NWIS - 美国地质调查局国家水资源信息系统 OFR - 美国地质调查局公开文件报告 P - 主要 PO - 邮局 PUB - 出版物 PVC -聚氯乙烯 QA/QC - 质量保证/质量控制 S - 二级 T - 三级 TDH - 德克萨斯州卫生部 TECH - 技术 TNRCC - 德克萨斯州自然资源保护委员会 TWC - 德克萨斯州水资源委员会(现为 TNRCC 的一部分) TWDB - 德克萨斯州水资源开发委员会 UM - 德克萨斯州水资源开发委员会用户手册 US - 美国 USGS - 美国地质调查局 USPS - 美国邮政服务 VAP - 脆弱性评估计划
CSA 加拿大标准协会 DEC 环境保护部 DOD 国防部 DOE 能源部 DOT 交通部 ECA 排放控制区 ECO 爱迪生 Chouest 海上公司 EIA 美国能源信息署 EPA 环境保护署 EPC 工程、采购和施工 ESD 紧急关闭 FAQ 常见问题 FERC 联邦能源管理委员会 FRA 火灾风险评估 FSA 设施安全评估 FSO 设施安全官 FSP 设施安全计划 GE 通用电气 GLMRI 大湖海事研究所 HazID 危害识别 HAZOP 危害和可操作性 HECO 夏威夷电力公司 HFO 重质燃料油 HGIM 哈维海湾国际海运有限责任公司 HI Gas 夏威夷天然气公司 HQ 总部 HSE 健康、安全和环境 HTW 人为因素、培训和值班(IMO 小组委员会) IACS 国际船级社协会 IAPH 国际港口协会 IGC Code 液化石油气运输船舶建造与设备国际规则散装气体 IGF 规则 使用气体或其他低闪点燃料的船舶国际安全规则 IEC 国际电工委员会 IMO 国际海事组织 ISM 规则 国际安全管理规则 ISO 国际标准化组织 kW 千瓦 LGCNCOE 液化气体运输船国家专业中心 LNG 液化天然气 LSMGO 低闪点