Department of Civil and Environmental Engineering, The University of Melbourne, Victoria, Australia 3010 (Tel: +61-3-8344-9691, e-mail: fenton@unimelb.edu.au, http://www.civenv.unimelb.edu.au/~fenton/) Abstract Expressions are obtained for discharge, momentum and energy conservation in pipes and channels其中包括边界层的影响,次要流和湍流。该过程符合液压的传统,其中效果不是准确地建模的,而是通过广义能量(科里奥利)和动量(Boussinesq)校正因子进行建模。它们比这些系数的传统定义大,液压教学和实践倾向于忽略。建议它们应包括在管道的教学和实践中,以及渠道液压学:
2.1公用事业现场计划应由北卡罗来纳州注册的工程师密封,并提供以下信息:(注意:证明液压的必要条件。)所有地下工作都需要许可证。2.2城市主的尺寸,识别测试消防栓,并给出每个尺寸的水流和压力数据,必须显示循环和死端的电源以及循环主的距离。必须指示2.3阀的类型和大小。阀门类型包括控制阀,消防部门连接,防回路预防器等。2.4地下管道的尺寸,类型和深度(从城市主到建筑物内部)。请参阅Cor Pud手册详细信息。2.5其他供水(即井,坦克等),如果适用,必须指示。2.6街,停车场和建筑物必须在计划中指示。 2.7五(5)组公用事业现场计划图纸必须在许可证申请中提交。 2.8他应按照NFPA的标准冲洗所有地下线,并由消防元帅办公室见证2.6街,停车场和建筑物必须在计划中指示。2.7五(5)组公用事业现场计划图纸必须在许可证申请中提交。2.8他应按照NFPA的标准冲洗所有地下线,并由消防元帅办公室见证
G. Sampath无隶属的sampath_2068@yahoo.com摘要。肽合成。肽是合成的C-TO-N或N-TO-C,作为延伸到同肽标头的延伸,一端绑定到固定表面,另一端绑定为固定表面,并由纳米孔封闭。表面安装在可以以0.1-0.15 nm精度移动的平台上;孔的作用像核糖体隧道,可保护氨基酸(AA)侧链免受不需要的耦合,并且还可以防止聚集和环化。合成发生在以下步骤中的循环中:耦合剂将受末端保护的AA连接到孔末端生长的头端残基;光学检测到耦合的完成;耦合剂,保护器和多余的AA被洗掉;该平台缩回3.5Å;新添加的AA被抛弃,保护器被洗净。合成完成后,平台通过添加的肽的长度向孔移动,将肽与标头分开。电势和液压的组合始终保持肽的完全拉伸。纳米孔发挥了次要作用,在上面没有进行测量。可以使用一系列标头和一系列纳米孔来完成平行合成,最高能力的纳米孔可以实现。原则上,可以合成的肽长度没有限制。没有侧链保护,最小的试剂量,减少洗涤,几乎没有合成后清理,该方法具有潜在的绿色水平。
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。
第 1 章 数据转换器历史 Walt Kester 章节前言 本章的灵感来自 Walt Jung 在其著作《运算放大器应用》(参考文献 1)第一章中对运算放大器历史的论述。他关于该主题的著作引用了数百篇有趣的文章、专利等,从整体上看,它们描绘了一幅运算放大器发展的迷人图景——从 Harold Black 早期的反馈放大器草图到现代高性能 IC 运算放大器。我们试图对数据转换器的历史做同样的事情。考虑到这项工作的范围——以及数据转换器的混乱和零散的发展——我们在组织材料方面面临着艰巨的挑战。我们没有将所有历史材料都放在这一章中,而是选择将其中的一些分散在整本书中。例如,第 3 章(数据转换器架构)中包含了与数据转换器架构相关的大部分历史资料,以及各个转换器架构描述。同样,第 4 章(数据转换器工艺技术)包含与数据转换器工艺技术相关的大部分关键事件。第 5 章(测试数据转换器)涉及与数据转换器测试相关的一些关键历史发展。为了尽可能使本书的每一章都具有独立性,一些历史资料在几处重复 - 因此,读者应该意识到这种重复是故意的,而不是粗心编辑的结果。其中之一如图 1.1 所示,可追溯到 18 世纪。第 1.1 节:早期历史 很难确定第一个数据转换器的确切制造时间或形式。本书作者所知的最早记录的二进制 DAC 根本不是电子的,而是液压的。奥斯曼帝国统治下的土耳其在公共供水方面存在问题,并建造了复杂的系统来计量水量。使用这种计量系统的实际大坝的一个例子是 19 世纪初在伊斯坦布尔附近建造的马哈茂德二世大坝,并在参考文献 2 中进行了描述。计量系统使用水库(在图中标记为集水箱),通过溢洪道保持在恒定深度(对应于参考电位),水刚刚从溢洪道上滴落(标准是流量足以漂浮吸管)。这在图 1.1A 中进行了说明。集水箱的水输出由浸没在水面以下 96 毫米处的带门控二进制加权喷嘴控制。喷嘴的输出为输出槽供水,如图 1.1B 所示。喷嘴尺寸对应于 1 lüle(= 36 l/min 或 52 m 3 /天)基本单位的二进制倍数和分数的流量。八 lüle 喷嘴被称为“sekizli lüle”,