不完全。Centerpoint飞行员称其ELF为“绿色”,一直在使用通过Xcel购买的风能可再生信用额的混合网格和Offsett中的电力,而没有明确的添加性。枢纽在我们地区公开反对加法性,要求美国国税局放松拟议的45V规则。他们的推动力是从我们地区,行业,DOE官员和立法者之外的枢纽中进行更大努力的一部分。许多人希望尽管EPA支持了大型氢生产商的规则和支持,但他们认为他们将能够满足拟议的45V要求,这将在某种程度上取得成功。Champaign-urbana Transit建造了一个新的太阳能电池阵列,以便为其燃料电池公交车制造绿色氢,这是我们地区加入的一个成功例子。拟议的指导,美国国税局(IRS)包括一个要求基于特定电力设施计算其排放的氢项目,必须证明他们从3岁以下的电力中汲取的电力。
量子自旋液体 (QSL) 形成一种极不寻常的磁态,其中自旋高度相关且直至最低温度仍相干地波动,但没有对称性破缺,也没有形成任何静态长程有序磁性。这种有趣的现象不仅本身具有重大的基础意义,而且为量子计算和量子信息带来了希望。在不同类型的 QSL 中,精确可解的 Kitaev 模型备受关注,其中大多数候选材料(例如 RuCl 3 和 Na 2 IrO 3 )具有有效 S =1/2 自旋值。在这里,通过广泛的基于第一性原理的模拟,我们报告了对 Kitaev 物理和外延应变铬基单层(如 CrSiTe 3 )中可能的 Kitaev QSL 态的研究,这些单层具有 S =3/2 自旋值。因此,我们的研究将 Kitaev 物理学和 QSL 的研究范围扩展到 3 d 过渡金属化合物。
DNA修复因子通过时空的隔离和DNA双链断裂(DSB)的溶解作用。最近的进步表明,某些DSB修复因子经历了液 - 液相分离(LLP),并显示出类似液滴的特性以及动态材料交换。重要的是,LLP调节了各种生物学过程,异常LLP参与了农业疾病的病理发展。此外,DSB修复过程中DNA修复因子的动态冷凝和溶解的表型呈现了LLP的特性。显着,RNA,聚(ADP-核糖)[PAR]和转录后修饰(PTM),例如磷酸化,泛素化和甲基化,被认为有助于DSB修复因子的LLP。从DSB期间LLP的功能的观点中,DNA修复因子可能会在DSB传感和DNA损伤修复信号转导中作用,参与同源推荐(HR)(HR)和非同源性端始终连接(NHEJ) - 介导的DSB介导的DSB修复,并调节下游径流的途径。基于这些发现,研究人员专注于
R. Dong、Prof. S. Liu、Prof. X. Jiang 哈尔滨工业大学生命科学与技术学院 中国哈尔滨市南岗区益矿路 2 号 150001 电子邮件:shaoqinliu@hit.edu.cn; jiang@sustech.edu.cn 董荣军,杭聪,陈哲,刘晓玲,钟玲,齐建军,黄勇,蒋晓玲教授 南方科技大学生物医学工程系 中国广东省深圳市南山区学院路 1088 号 518055 王林博士,王林教授,陆英教授 中国科学院脑连接组与操控重点实验室,脑认知与脑疾病研究所 中国科学院深圳先进技术研究院 深港脑科学研究院-深圳基础研究中心 深圳 518055,中国 电子邮件:lp.wang@siat.ac.cn; luyi@siat.ac.cn
对于不依赖环境加热的驱动,LCE 已被合成/加工以响应光、电场或焦耳加热。15 对光的主动响应可能非常快 16,17 并且显然对许多应用有用 18–20 但在远程/无法访问的环境中或在环境光可能影响驱动的情况下可能被禁止。或者,可以使用电场来驱动 LCE。通过添加碳纳米管,LCE 的机电响应性得到改善;然而,相对于未填充的 LCE,刚性内含物会降低驱动应变。21,22 对于厚度大于几百微米的人造肌肉,光和电场驱动都难以扩展。焦耳加热已通过表面加热器和导电填料 23–28 实现,这对于开发使用 LCE 作为软致动器的不受束缚的软机器人很有希望。29,30
该研究对米兰一栋 10 套公寓住宅楼中由光伏板供电的用于供暖的不同储氢解决方案进行了热力学和经济评估,重点关注压缩氢、液态氢和金属氢化物。技术评估涉及使用 Python 编写热力学模型以解决技术和热力学性能问题。经济分析评估资本支出、投资回报率以及每单位储存氢和能源的成本。该研究旨在对文献综述中介绍的三种储存方法的热力学和经济指标进行准确评估,指出其中一种具有最佳技术经济性能以供进一步开发和研究。所进行的分析表明,压缩氢是最佳替代方案,但其成本对于小型住宅应用来说仍然太高。将该技术应用于大型系统案例将使该解决方案具有经济可行性。
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]