本报告总结了协调研究项目 (CRP) 下开展的工作,该项目名为“核结构抗震性能预测分析方法验证”。该项目由国际原子能机构根据其快堆技术工作组 (TWGFR) 的建议组织实施,于 1996 年至 1999 年间开展。核电站和设施的主要要求之一是确保安全,并在地震等强外部动态载荷下不发生损坏。液态金属冷却快堆 (LMFR) 的设计包括在低压下运行的系统,并包括薄壁和柔性部件。这些系统和部件可能会受到地震区地震的严重影响。因此,国际原子能机构通过其先进反应堆技术开发计划支持成员国将抗震技术应用于 LMFR 的活动。将该技术应用于 LMFR 和其他核电站及相关设施将带来优势,即在存在地震风险的地区可以安全地使用标准设计。该技术还可以提供一种抗震升级核设施的方法。应用于此类关键结构的设计分析需要牢固确立,而 CRP 为评估其可靠性提供了宝贵的工具。来自印度、意大利、日本、韩国、俄罗斯联邦、美国的十个组织
工程纳米材料已成为微电子、航空航天、能源生产和储存、毒理学研究和医学应用等多个领域的深入研究焦点。开发新的表征方法和仪器是推动材料研究和开发的关键因素,从而提高产品性能和可靠性。分析挑战包括分析 10 纳米范围内的微小特征,这导致分析量和检测限之间的权衡。二次离子质谱 (SIMS) 是一种强大的表面分析技术,特别是它能够以出色的灵敏度和高动态范围检测所有元素并区分同位素。SIMS 允许获取质谱、进行深度剖析以及 2D 和 3D 成像。安装在最新一代 FIB 平台上的新型离子源(例如气体场离子源 (GFIS)、Cs + 低温离子源 (LoTIS) 或多物种液态金属合金离子源 (LMAIS))的开发为纳米级物体的分析开辟了新的可能性。在 FIB 仪器中添加 SIMS 功能不仅可以提供最高分辨率和灵敏度的成像,还可以提供在图案化和铣削过程中进行现场过程控制的工具 [1,2]。
电池材料的线性热膨胀系数 固态金属合金的线性热膨胀系数 液态金属合金的体积膨胀系数 固态金属的密度 熔化/液态金属的密度 熔化时金属的密度变化 电池中液态金属的表观长度 活塞之间试件的表观长度 熔化时密度变化导致的电池中样品的长度变化 固态金属的长度变化 填充电池导致的熔化长度变化 试件加电池活塞的总长度 熔化时测量的总长度变化 试件加电池活塞的长度变化 金属样品的质量 电池半径与温度的关系 固态金属试件半径与温度的关系 合金的熔点,固相线 合金的熔点,液相线 相对于参考温度(通常为室温)的温度变化 熔融状态下金属的体积 低于固相线的任何温度 T 下的固态金属的体积 熔化时金属的体积变化 熔化开始时电池和样品之间的体积不匹配 测试开始时两个活塞的长度 温度从室温变化 I1T 时两个活塞的长度变化
每年将在不久的将来生产数十亿个一次性薄膜电子产品,用于智能包装,物联网和可穿戴生物监测贴片。在这些情况下,传统的刚性电池在形式和人体工程学方面也不是最佳的,也不是生态方面的。迫切需要使用薄,可拉伸,弹性且可回收的新型储能设备。在此,提出了一种新型的材料和制造技术结构,允许完全3D打印的软性薄膜电池对机械应变有弹性,如果可修复,可充电,可回收,并且可以在其寿命结束时回收。通过利用数字可打印的超易碎液态金属电流收集器和新型的镀具有镀碳碳阳极电极,AG 2 O-Gallium电池可快速打印并根据应用程序定制。通过优化镀具有耐碳碳复合材料的性能,获得了26.37 mAh cm-2的创纪录的面积容量,在100%应变时10个周期后改善了10.32 mAh cm-2,而前所未有的最大应变耐受性为≈200%。部分损坏的电池可以治愈自己。通过创新的冷蒸气刺激来治愈严重损坏的电池。一个用印刷传感器来监控心脏的数字印刷,泰勒制造的电池健康监控贴片的示例,并证明了呼吸。
摘要:灵活的触觉传感器由于其生物适应性和快速信号感知而显示出对人工智能应用的希望。Triboeelectric传感器可实现主动动态触觉传感,同时整合静态压力传感和实时多通道信号传输是进一步开发的关键。在这里,我们提出了一个集成结构,该结构结合了一个用于静态时空映射的电容传感器和一个用于动态触觉识别的摩擦电传感器。4×4像素的液态金属柔性双模式互动耦合触觉传感器(TCTS)阵列可实现7毫米的空间分辨率,表现为0.8 PA的压力检测极限,快速响应6 ms。此外,使用基于MXENE的突触晶体管使用的神经形态计算在90个时期内通过TCTS阵列收集的动态互动信号在90个时期内实现了100%的识别精度,并实现了来自TCTS阵列的动态互动信号,以及从多键盘触觉数据中的交叉空间信息通信中实现了多型触觉数据的交流。结果阐明了在人界面和高级机器人技术中双模式触觉技术的相当大的应用可能性。关键字:互联网耦合,触觉传感器阵列,神经形态计算,人类 - 机器接口,混合现实
•大规模储能解决方案 - 除锂离子电池以外的其他解决方案似乎不适合像印度这样的国家,其原因包括我们没有基本原材料的事实 - 液态金属流量电池(例如,气流电池)是另一个有吸引力的选择,必须探索。•电网基础设施 - 当前的网格将无法迎合间歇性和分布的电力输入;智能网格的概念非常强大,可以满足两种供应方面的挑战(可再生能源)以及需求管理(动态定价以照顾其峰值负载)。•运输(电动流动性,既适用于人和货物)。•采矿,矿物加工和提取冶金工业(目前完全取决于化石燃料,不仅是作为热源的化石燃料,而且还依赖于将金属氧化物转化为金属的还原剂)。•废物副产品的回收,包括市政废物,尾矿和冶炼厂,包括钢渣,红泥和花盆衬里,电子废物和医院废物。•过渡所需的原材料的供应链 - 来自其他地区,城市采矿,深海开采和空间采矿的采购策略。•寻找钢和水泥生产的替代技术选择,以减少环境足迹 - 目前,这两种材料将在可预见的未来继续保持印度经济的骨干,并且在未来十年中,消费可能会增加数量级。•废水处理和回收。•包括淡化的水净化技术
20 世纪 70 年代,核电站规模和难度的快速增长引起了人们对小型、适度设计的兴趣,这些设计本质上比设计特征的使用更安全。随着核技术的发展,海事领域需要进行革命,特别是先进的船舶推进。近年来,许多反应堆制造商正在积极改进小型模块化反应堆设计,甚至更好地使用安全功能。几种设计将终极安全性融入其中。它们完全从设计中消除了特定的事故引发因素。其他设计特征有助于减少不同类型的事故或有助于减轻事故的后果。虽然一些安全功能与最大 SMR 设计是通用的,与冷却剂技术无关,但其他功能特定于液态金属冷却、水、气体或 SMR 设计。结果:不同的组件和研究实验室在船舶推进领域研究的反应堆概念比在发电领域研究的反应堆概念要多,从它们在陆地应用方面的经验中可以学到很多东西。SMR 中安全功能的广泛使用有可能使这些发电厂极其活跃,保护公众和投资者。结论:出于这两点考虑,人们认识到核反应堆是海军先进推进的理想发动机。本文将介绍分析 SMR 概念设计和设计由推进模块组成的模块化船舶的工作。
异质结构 (HS) 材料由于其多种微观结构和优异的物理性能而受到广泛研究[1 e 5]。它们由不同性质的软硬异质区组成,不同区域之间的协同效应可改善物理性能。HS 材料根据硬区形状可分为层状结构[6,7]、梯度结构[5,6,8,9]、层压结构[10 e 13]、双相 (或多相) 结构[14 e 19]和核壳结构[20 e 22]。十年来,另一种互连 (或互穿) 结构一直受到人们的关注。这种结构具有双连续的两个不同的区域,其中硬相和软相都是连续的且相互交错。这种独特的结构包括胞状结构(如螺旋状结构)和由旋节线分解形成的空间无序模式。双连续结构的软区和硬区在机械上互相约束。增材制造[23,24]和粉末冶金[25,26]已用于开发互连的HS材料。然而,这些方法在区域大小及其分布方面存在技术限制。纳米级区域和均匀分布对于提高协同效应至关重要。最近,作者提出,通过液态金属脱合金(LMD)合成的3D互连HS材料在克服强度-延展性权衡方面具有巨大潜力[27]。从(FeCr)50Ni50前驱体中,可混溶的Ni选择性地溶解在Mg熔体中。
由液态金属(LM)液滴组成的软,多功能复合材料的材料挤出(MEX)可以为从软机器人到可拉伸电子设备的一系列应用提供高度量身定制的性能。但是,了解LM墨水流变性和打印过程参数如何在MEX处理过程中重新配置LM液滴形状,以实现对属性和功能的原位控制。在此,确定这些复合材料的MEX期间哪个控制LM微结构,确定了哪些控制LM微结构。评估这些参数的相互作用和相互依赖性,并通过系统地调整每个单独的参数,将几乎球形的LM液滴转化为高度伸长的椭圆形形状,平均纵横比为12.4。的材料和过程关系是为LM墨水建立的,该墨水表明,在MEX期间,应实现从球形到椭圆形形状的LM微结构编程的墨水粘度阈值。此外,发现LM液滴上的薄氧化物层在液滴形状的重新配置和保留中起着独特而关键的作用。最后,提出了基于材料和过程参数的两个定量设计图,以指导MEX添加剂制造策略,用于调整LM-Polymer Inks中的液滴体系结构。这项研究所获得的见解实现了材料和制造的知情设计,以控制新兴的多功能软复合材料的微观结构。
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。