为了成功实现氧化还原流电池的广泛市场进入,不仅技术性能,而且系统的经济效率也很重要。因此,已知的流电池必须针对特定应用进行技术经济优化。并非每一项技术上可行的改进都会对经济相关的性能或与能源相关的特定成本产生相同的积极影响。借助优化潜力作为值,可以对具体情况下可能的优化方法进行优先排序。对基于钒和甲基紫精和 TEMPO 的氧化还原流电池进行了广泛的比较测量,为此处介绍的模型的所有输入值建立了数据基础。数据来自实验室电池的测量,因为只有从这些实际数值中才能获得成本。本文开发的理论模型可用作其他研究的深厚基础,例如工业电池,以便能够进行目标导向的优化和更现实的比较。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 1945-7111/acdda0]
尽管取得了上述进展,但是由于SRFB在高温下固有的热阻,导致PEC充电装置光电压损失,因此人们对其实际应用的看法并不乐观。例如,c-Si装置的功率损失率为0.45%/℃(70℃时损失约200mV)。14具体来说,光电压损失会消除氧化还原化学反应的驱动力。然而,尚未对热对RFB光充电性能的影响进行彻底的定量分析。SRFB的独特工作原理是电解质流动产生了一条通路,该通路可以通过从光电极到液体流动的热量传递来弥补热损失,液体流动直接位于光电装置后面,如图1a所示。这意味着电解质有效地充当了冷却剂。在这里,我们讨论了光充电性能在氧化还原液流电池应用中的热电化学行为,并使用基于我们之前验证过的研究 12 和传热理论的组合模型揭示了 PEC 设备集成系统的协同效应。15 为了有效地传递内容,我们开发了一种创新的多功能光充电电池概念(图 1a)。我们使用了从科罗拉多州国家可再生能源实验室 (NREL) 获得的典型冬日和典型夏日的真实太阳光谱数据 16(图 1b)。建议的设计使用主动热管理,采用传热和强制
去年我曾表示,交付是公司的一个重要目标,我很高兴地报告,2023 年 Invinity 在 12 个月内交付和调试的钒液流电池数量比以往任何时候都多。这种经过验证的交付能力巩固了 Invinity 作为世界领先的钒液流电池制造商的地位,满足了客户的需求。在过去的 12 个月里,我去过两个工地。一个是加拿大大型传统太阳能/储能站点,另一个是欧洲“电表后”项目,由 ENGIE Belgium、Equans BeLux 和 Jan De Nul 在比利时能源部的支持下交付。这些项目凸显了我们技术的灵活性及其在广泛应用中为客户创造价值的能力。
Salgenx 的电网规模盐水电池储能是一种钠液流电池,它不仅可以储存和释放电能,还可以在充电的同时进行生产,包括海水淡化、石墨烯和使用风力涡轮机、光伏太阳能电池板或电网电力进行热储存。使用人工智能和超级计算机来制定、评估、验证和预测自组装和自修复液流电池电极。将热量储存在盐水中并在需要时使用。使用模块化集装箱设计的商业规模、家庭、海洋、远程和电网规模的储能。高峰需求定价和非高峰定价之间的电网费率套利。
热机械储能和氧化还原液流电池可实现长时间储能,在需求低时储存能量,在需求高时重复使用。它还能够实现可再生能源。
摘要 - 研究了Cu靶垫粗糙度对来自两个不同CU浴的Electrols Cu的生长模式的影响,其浴A具有基于氰化物的基础,而Bath B Bath B Bath B Bath B Bath B Bath B Bath Bath Bate Bate Bate Bate Bate Base Base Base stobilizer System。两个浴室通常在PCB行业中使用。在BATH B的情况下,对于高于R A 5 300 nm高的平均目标垫粗糙度,观察到了两种生长模式。第一个模式是次级Cu下形态学的复制,而第二种模式则主要在底物晶体的暴露位点形成球形晶粒(Cu结节)。这些Cu结节通常具有与纳米类动物朝向其碱基的theefthed Electrolesscuthickness和Containa高密度相当的半径。相关的空隙形成似乎与弱盲菌中的CU/CU/CU互连相关。有趣的是,对于基于氰化物的浴A形成结节的趋势被广泛抑制,而基于氰化物的浴则是对目标垫粗糙度的nododule nodoul nodoul nodoup nodoup to y 5 1,000 nm。当研究溶液输送和交换时,很明显,较低的汇率会对电气cu的沉积产生负面影响,即使表现出的粗糙度值也可能表明,也可以预期具有不良结节和空隙的结果。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其