深部脑刺激 (DBS) 疗法需要在植入前进行广泛的针对患者的计划,以实现最佳临床效果。对患者大脑图像进行集体分析很有前景,可以为您提供更系统的计划帮助。本文介绍了使用组特定的多模态迭代模板创建过程的规范化管道设计。重点是比较一系列免费配准工具的性能并选择最佳组合。该工作流程应用于 19 名具有 T1 和 WAIR 模态图像的 DBS 患者。使用文献中的几种设置,使用 ANTS、FNIRT 和 DRAMMS 计算非线性配准。使用丘脑和丘脑底结构的单一专家标签及其在整个组中的一致性来测量配准精度。使用其他地方发布的高方差设置的 ANTS 提供了最佳性能。FNIRT 和 DRAMMS 均未达到 ANTS 的性能水平。根据所得的解剖结构的标准化定义,使用来自 19 名患者的数据提出了定义 58 个结构的间脑区域图谱。
摘要:深部脑刺激是多种脑部疾病的成熟疗法,其潜在适应症正在迅速扩大。神经影像学通过改进解剖结构描绘以及最近脑连接组学的应用,推动了深部脑刺激领域的发展。这些疾病的旧有病变定位理论已经发展为较新的基于网络的“回路病”,通过使用先进的神经影像学技术(如扩散纤维束成像和 fMRI),可以直接评估体内这些脑回路。在这篇综述中,我们结合使用超高场 MR 成像和扩散纤维束成像来强调目前美国批准的深部脑刺激适应症的相关解剖结构:特发性震颤、帕金森病、耐药性癫痫、肌张力障碍和强迫症。我们还回顾了有关使用 fMRI 和扩散纤维束成像来了解深部脑刺激在这些疾病中的作用,以及它们在手术定位和设备编程中的潜在用途的文献。
在本研究中,我们提出了一个新的开源模拟平台,该平台包含计算机辅助设计和计算机辅助工程工具,用于高度自动化地评估深部脑刺激 (DBS) 期间的电场分布和神经激活。它将展示如何使用 Python 控制的算法构建和检查体积导体模型 (VCM),以生成、离散化和自适应网格细化计算域,以及结合组织的异质和各向异性属性和分配神经元模型。通过一组预定义的输入设置和快速可视化例程,可以方便地使用该平台。通过与商业软件进行比较,评估了由该平台创建和优化的 VCM 的准确性。结果表明,电势分布模型之间没有显著偏差。对 VCM 不同物理的定性估计与以前的计算研究一致。所提出的计算平台适用于在科学建模研究中准确估计 DBS 期间的电场。未来,我们打算获得 SDA 和 EMA 的批准。成功整合由内部开发的算法控制的开源软件,提供了高度自动化的解决方案。该平台允许进行优化和不确定性量化 (UQ) 研究,而开源软件的使用则有助于模拟的可访问性和可重复性。
背景:丘脑的中央 (CM) 区域是深部脑刺激 (DBS) 治疗图雷特综合症 (TS) 的常见目标。然而,目前还没有标准的微电极记录或大刺激方法来区分 CM 丘脑与其他附近的结构和核。病例报告:我们在这里介绍了一个 TS DBS 中传统立体定向靶向失败的病例。术后局部场电位记录 (LFP) 显示的特征包括随意运动期间的 β 功率去同步和静息时丘脑皮质相位幅度耦合。这些发现表明 DBS 导线的位置不是最理想的,位于丘脑的腹侧中间 (VIM) 核,而不是预期的 CM 区域。由于初次手术后三个月抽搐严重程度量表没有临床改善,患者接受了导线修订手术。DBS 导线的轻微重新定位导致了截然不同的临床结果。之后,LFP 显示 beta 失同步减少以及丘脑皮质相位幅度耦合消失。随访临床访问记录了患者整体抽搐评分的改善。讨论:此案例提供了初步证据,表明将生理学与基于图谱的定位相结合可能会改善某些 Tourette DBS 病例的预后。需要更大规模的前瞻性研究来证实这些发现。亮点:本报告展示了一例中心核区域深部脑刺激 (DBS) 失败的病例。我们观察到 DBS 手术几个月后抽搐改善不理想,随后的导线修订改善了结果。神经生理学提供了一个重要线索,表明 DBS 导线放置不理想的可能性。在导线修订期间重复 LFP 显示 beta 失同步减少以及丘脑皮质相位幅度耦合消失。在双侧 DBS 导线修订期间稍微重新定位后抽搐结果有所改善。此案例提供了初步证据支持使用生理学来增强 Tourette DBS 病例的基于图谱的定位。
在大多数物种中,生存依赖于下丘脑对内分泌轴的控制,这些内分泌轴调节生殖、生长和新陈代谢等关键功能。几十年来,下丘脑-垂体轴的复杂性和难以接近性阻碍了研究人员阐明内分泌性下丘脑神经元活动与垂体激素分泌之间的关系。事实上,对内分泌功能中枢控制的研究在很大程度上是由“传统”技术主导的,这些技术包括研究体外或离体分离的细胞类型,而不考虑大脑、垂体和外周水平的调节机制的复杂性。如今,通过利用现代神经元转染和成像技术,可以在原位、实时和有意识的动物中研究下丘脑神经元活动。钙活动的深层脑成像可以通过长期植入的梯度折射率透镜进行,它提供了一个“进入大脑的窗口”,可以在单细胞分辨率下对多个神经元进行成像。通过这篇评论,我们旨在强调深层脑成像技术,这些技术能够研究清醒动物的神经内分泌神经元,同时保持大脑、垂体和周围腺体之间调节环路的完整性。此外,为了帮助研究人员设置这些技术,我们讨论了所需的设备,并提供了进行这些深层脑成像研究的实用分步指南。
深部脑电神经反馈可使帕金森病患者控制病理振荡并加快运动 作者:Oliver Bichsel 1,2,3,4、Lennart H. Stieglitz 3,4、Markus F. Oertel 3,4、Christian R. Baumann 2,4、Roger Gassert* 1、Lukas L. Imbach*、2,4(*共同资深作者) 1. 瑞士苏黎世联邦理工学院健康科学与技术系康复工程实验室 2. 瑞士苏黎世大学医院神经内科 3. 瑞士苏黎世大学医院神经外科 4. 瑞士苏黎世大学医院临床神经科学中心 摘要 帕金森病运动症状与基底神经节病理性增加的 β 振荡有关。虽然药物治疗和深部脑刺激 (DBS) 可以同时减少这些病理性振荡和改善运动表现,但我们着手探索神经反馈作为一种内源性调节方法。我们实施了深部脑电神经反馈,通过植入的 DBS 电极测量病理性丘脑底振荡的实时视觉神经反馈。所有 8 名患者在训练后几分钟内有意识地控制持续的 β 振荡活动。在一次一小时的训练中,β 振荡活动的减少逐渐增强,并加速了手部运动。最后,即使在去除视觉神经反馈后,仍然可以对深部脑活动进行内源性控制,这表明神经反馈获得的策略在短期内得以保留。当 2 天后应用学到的心理策略时,我们观察到了类似的运动改善。即使在没有实时神经反馈的情况下,进一步改善深部脑神经反馈可能会通过改善症状控制使帕金森病患者受益。关键词:β 能量、深部脑刺激、神经反馈、局部场电位、运动迟缓、帕金森病
a 基尔大学医学心理学和医学社会学系,德国基尔 D-24113。b 基尔大学实验与应用物理研究所,德国基尔 24098。c 基尔大学神经儿科系,德国基尔 D-24098。d 明斯特大学生物磁学和生物信号分析研究所,德国明斯特 D-48149。e 基尔大学工程学院数字信号处理和系统理论组,德国基尔 D-24143。f 伯特利福音医院儿童和青少年精神病学和心理治疗系,德国比勒费尔德 33617。
丘脑底核 (STN) 的深部脑刺激 (DBS) 是治疗帕金森病 (PD) 运动症状的有效方法。然而,介导症状缓解的神经元素尚不清楚。先前的研究得出结论,直接光遗传学激活 STN 神经元对于缓解帕金森病症状既不是必要的也不是充分的。然而,用于细胞特异性激活的通道视紫红质-2 (ChR2) 的动力学太慢,无法跟上有效 DBS 所需的高速率,因此 STN 神经元的激活对 DBS 治疗效果的贡献仍不清楚。我们使用超快视蛋白 (Chronos) 量化了单侧 6-羟基多巴胺 (6-OHDA) 损伤后雌性大鼠的光遗传学 STN DBS 对行为和神经元的影响。 130 pps 的光遗传 STN DBS 减少了病理性旋转并改善了前肢踏步缺陷,类似于电 DBS,而使用 ChR2 的光遗传 STN DBS 不会产生行为效应。与电 DBS 一样,光遗传 STN DBS 表现出对刺激率的强烈依赖性;高刺激率可缓解症状,而低刺激率无效。高刺激率光遗传 DBS 可增加和减少 STN、苍白球外部 (GPe) 和黑质网状部 (SNr) 中单个神经元的放电率,并破坏 STN 和 SNr 中的 b 波段振荡活动。高速率光遗传学 STN DBS 确实可以通过减少 STN 相关神经回路中的异常振荡活动来改善帕金森病运动症状,这些结果强调了视蛋白的动力学特性对光遗传学刺激的效果有很大影响。
摘要。目的 — 深部脑刺激 (DBS) 是一种安全且成熟的治疗特发性震颤 (ET) 和其他几种运动障碍的方法。改进 DBS 疗法的一种方法是自适应 DBS (aDBS),其中刺激参数根据来自外部或植入传感器的生物反馈实时调节。之前测试的系统由于要求患者持续佩戴必要的传感器或处理设备以及隐私和安全问题而无法实现转化。方法 — 我们设计并实施了一个可转化的训练数据收集系统,用于完全植入的 aDBS。本研究招募了两名患者,他们在 M1 的手部长期植入脑皮层电图条带,并在同侧丘脑腹侧中间核植入 DBS 探针以治疗 ET。使用可转化的分布式训练程序进行训练,与以前的研究相比,对数据收集的控制程度大大提高。使用该系统训练了一个线性分类器,偏向于根据临床考虑激活刺激。主要结果 — 临床相关的平均假阴性率,定义为刺激下降到 1 以下的时间分数
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。