快速的经济和社会发展使人类成为丰富的物质文明,但也加剧了化石燃料能源的大规模消费。[1,2]随之而来的能源危机,环境污染以及由二氧化碳快速碳(CO 2)引起的全球变暖已成为严重的问题,限制了人类可持续发展。[2,3]在2015年的“巴黎同意”之后,越来越多的国家和地区实施了将净零温室气体排放到其开发策略中的目标,提出了“零碳”或“碳中性”的目标。[4,5]建造清洁,低碳,安全和有效的新能源系统已成为实现这一目标的关键。随着新的能源发电和电网能源的存储已迅速开发,对电化学功率来源和能源存储系统的需求越来越多。lith-ium-ion电池(LIBS)是最令人惊叹的现代电化学能源存储技术之一,受到理论特异性低的能量密度(通常低于700 WH kg-1)的限制,甚至缺乏足够的硬盘性和可承受的能力,无法满足实践需求。[6,7]因此,必须开发具有较高能量密度的新的二级电池系统,以应对未来的大规模动力存储和运输动力利用。配备高级CO 2电极的Alkali Metal -Co 2电池提供了有希望的策略,用于回收和使用CO 2和电化学能量转换和存储。[8,9]例如,Li – Co 2和Na – Co 2电池分别提供了高达1876和1125 WH kg -1的理论特异性能量(根据4Li(Na) + 3CO2↔2Co2↔2li2 CO 3(Na 2 CO 3(Na 2 CO 3)的反应,它们比Libs的反应高得多。[10,11]令人遗憾的是,与对Li – Co 2电池进行密集的探索相比,与Na – Co 2电池有关的研究只是冰山一角。实际上,通过涉及Na和Co 2的相互作用产生的低自由能(δrgθ= - 905.6 kj mol-1)比LI(δrgθ= -1081 kJ mol-1)产生的相互作用会降低充电潜力,[11 = -1081 kJ mol-1),[11]有利于对Elec-trolyte抑制效率的强大效率,并延伸了Elec-trolyte的效率 -
摘要 — 当前移动应用的内存占用量快速增长,对内存系统设计构成巨大挑战。DRAM 主内存不足会导致内存和存储之间频繁的数据交换,这一过程会损害性能、消耗能量并降低典型闪存设备的写入耐久性。另一方面,更大的 DRAM 具有更高的漏电功率并会更快耗尽电池电量。此外,DRAM 的扩展趋势使得 DRAM 在移动领域的进一步增长因成本而变得难以承受。新兴的非易失性存储器 (NVM) 有可能缓解这些问题,因为它的单位成本容量高于 DRAM,并且静态功耗极低。最近,出现了各种 NVM 技术,包括相变存储器 (PCM)、忆阻器和 3-D XPoint。尽管有上述优势,但与 DRAM 相比,NVM 的访问延迟更长,并且 NVM 写入会产生更高的延迟和磨损成本。因此,将这些新内存技术集成到内存层次结构中需要从根本上重新构建传统系统设计。在本研究中,我们提出了一种硬件加速内存管理器 (HMMU),它在平面地址空间中寻址,并将一小部分 DRAM 保留用于子页块级管理。我们在这个内存管理器中设计了一组数据放置和数据迁移策略,以便我们能够利用每种内存技术的优势。通过用这个 HMMU 增强系统,我们降低了整体内存延迟,同时还减少了对 NVM 的写入。实验结果表明,与未来可能难以维持的全 DRAM 基线相比,我们的设计实现了 39% 的能耗降低,而性能仅下降了 12%。
内阁秘书,印度政府,同时主持秘书委员会(COS)的会议,该主题是关于“制造,销售,利用和融合乙醇” Interia的主题的主题,指示“ MOP&ng可能会在一年一度的融合计划中达成一定的策略,但要达到下一个策略,但在下一个融合了10年的范围,但<等问题,例如乙醇的定价,汽车行业的速度匹配,可以用乙醇的供应,此类车辆的价格制造新的发动机,不同发动机的燃油效率等。可以研究。”
与Covid-19疫苗接种有关的怀疑和关注的表达:一种混合的方法论方法。2021年1月28日; RIVM Corona行为部门于2021年1月6日,荷兰实施了针对冠状病毒的私人接触运动。在支持方面,RIVM Corona行为部门就电晕疫苗接种的人们的担忧,疑问和需求进行了研究。这项研究是在感染稳定时在荷兰(1月14日至1月15日)的第二次硬锁定中进行的。目的/研究问题,我们着手确定当人们决定是否要接种冠状病毒疫苗时,这些态度和观点发挥了作用。我们通过研究人们对疫苗接种信息运动的问题和怀疑来做到这一点。调查结果提供了有关如何收到信息运动的见解,并提供了改善政府通讯的路线。方法本报告包括以下研究的结果:
摘要可再生能源是由于常规资源的迅速消耗而解决能源问题危机的最佳解决方案之一。光伏(PV)是最有希望的可再生能源之一,也可以用作混合电气系统的备用电源。PV在燃料电池的支持中,由于其恒定的输出功率可以是可行的电源,加上电池可用的电源,可以充当能源存储和备用电源,以限制燃料电池的使用以降低成本。该混合系统连接到非线性直流负载,以分析该系统提供负载所需的足够功率的能力,分析每个源之间的功率切换并观察电池的充电和放电条件。该项目的目的是开发使用MATLAB/SIMULINK连接到非线性负载的光伏,燃料电池和电池混合系统。为了确保产生的功率等于所需的功率,使用助推器和降压转换器用于上升并沿着与直流总线连接的电压沿电压降低。结果表明,提出的混合系统能够充分供应负载。关键词:PEMFC,光伏,燃料电池,混合系统,能源存储。1。介绍目前,作为能源生产的基本能源,可再生能源已在世界各地都非常受欢迎,在这种能源中,煤炭,化石燃料等以前的燃料来源已经大大耗尽。在这三个资源之间,太阳能此外,传统燃料来源产生的能源产生会导致空气污染和臭氧层的耗尽,从而进一步造成了对自然的更多损害。最合适,最喜欢的替代方法是使用可再生能源,例如风,太阳能和水。
1 宝鸡文理学院计算机科学系,宝鸡 271000,中国 2 达米埃塔大学计算机系,达米埃塔 34511,埃及 3 伊斯坦布尔医学大学统计学系,伊斯坦布尔,土耳其 4 中南大学资源与安全工程学院,长沙 410083,中国 5 维新大学研究与发展研究所,岘港 550000,越南 6 安巴尔大学计算机科学与信息技术学院计算机科学系,拉马迪,伊拉克 7 吕勒奥理工大学土木、环境与自然资源工程,吕勒奥 97187,瑞典 8 同德唐大学土木工程学院,胡志明市,越南 9 同德唐大学土木工程学院土木工程可持续发展研究组,胡志明市,越南 10 德克萨斯 A&M 大学生物与农业工程系,德克萨斯州大学城77843-2117,美国 11 Zachry 德克萨斯 A&M 大学土木工程系,德克萨斯州大学城 77843-2117,美国
使用 Thorpe 排序和尺度分析对 2017 年春季收集的一些高分辨率 CTD 数据进行了分析,包括常用的“Thorpe 尺度”方法和较少使用的方法,该方法基于直接估计“可用翻转势能”(AOPE):混合“湍流斑块”中原始密度剖面与排序密度剖面的势能之间的差异。剖面仪的速度各不相同,因此空间(垂直)采样不均匀。开发并描述了一种方法,将 Thorpe 缩放和 AOPE 方法应用于这种不均匀采样的数据。 AOPE 方法似乎对“背景”浮力频率 N 的估计(约束性较差)不太敏感。虽然这些方法通常用于首先估计湍流动能的耗散率 « K,但真正的目标是估计密度扩散率 K r,从而估计混合对密度分布的净改变。两个易于测量的无量纲参数被提出作为混合斑块“年龄”或“状态”的可能指标,这可能有助于解决总湍流能量和耗散如何在动能和势能成分之间分配的问题,以及测量的 AOPE 中有多少最终会改变背景分层。下面提供了一个关于其如何工作的推测性示例。
已经进行了一项研究,以制造和化学修改Torlon®4000T和Torlon/p84共聚酰胺 - 酰亚胺混合的空心纤维作为异丙醇(IPA)脱水的新材料。已经发现,Torlon/p84混合物是可混杂的,正如通过单玻璃过渡温度(T G S)确认的,这些温度(T G S)通过差分扫描量热法(DSC)检测到。由干式湿旋转工艺制造的纯和混合空心纤维都不显示出对抑制水和IPA诱发的肿胀的能力,而交联的纯Torlon空心纤维仅显示边缘改善。然而,借助p- xylenadiamine,Torlon/P84混合纤维在化学交联修饰后表现出增强的分离性能。据信P- Xylenenediamine诱导的交联反应会导致更大的链条堆积和自由体积的减少。对于85/15 wt。%ipa/h 2 o进料溶液,获得的最高分离系数为185±8,所获得的总渗透量为1000±45 g/m 2 h。 ©2007 Elsevier B.V.保留所有权利。
基于三波混合的参数放大器是电磁信号处理的基本过程[1],无论是在光学和微波频域中。最近,随着量子信息科学的出现,三波混合为单个光子水平[2,3]的测量提供了一个基本的构建块,在此至关重要的是,非线性混合过程纯粹是消除的。一类重要的参数放大器利用三波混合来通过向下转换较高的频率泵场的转换来扩大传入的信号场。放大过程涉及在角频率下传入的泵photon!p以频率分为传出的信号和怠速光子!s和!i,在哪里进行。p¼!sÞ!i。自非线性光学元件早期以来,就已经知道了经典级别的三波混合过程原则上是可逆的和相位敏感的。在三波混合的情况下,这是最容易看到的,这是通过制作不耗尽的泵近似,从而导致信号和惰轮的线性两端口散射矩阵。通常仅在信号端口的输入中运行非排定副标,从而导致相位呈现相位的放大器,并带有功率增益,G 0。However the S matrix has two eigenvectors corresponding to inputs on both signal and idler port, with reciprocal eigenvalues given approximately by 2 ffiffiffiffiffiffi G 0 p , 1 = 2 ffiffiffiffiffiffi G 0 p , the former corresponding to coherent amplifica- tion of signal and idler with power gain 4 G 0 , and the latter to coherent attenuation (CA).在CA中,信号和惰轮都用正确的相对相施加,并且它们连贯地组合到泵频率,从而导致功率衰减1 = 4 g 0;这是相干扩增的时间转换过程。直到最近,还没有几乎无损的微波放大器,可以通过此简单的矩阵来很好地建模。但是,我们在这里使用的约瑟夫森参数转换器(JPC)几乎是无损的,并且性能限制了量子[5,6]。连贯的衰减和扩增