体内噬菌体显示是一种用于识别有机或疾病的血管归巢肽的方法,用于靶向药物。对于目标分子的性质和身份而言,这是不可知论的。当前的体内生物植物缺乏内置机制,无法选择能够进行血管归巢的肽,这也将能够组织渗透到组织实质中的治疗相关细胞。在这里,我们将体内噬菌体显示与基于微透析的实质恢复和高通量测序相结合,以选择除血管归巢外,还可以促进渗出和组织穿透。我们首先在皮肤伤口中证明了该方法可以选择性地将已知的归巢肽与具有额外组织渗透能力的肽分开。筛查肽库中的肽鉴定在血管性和糖尿病伤口中的血管外肉芽组织中鉴定出肽,以及视网膜病中的视网膜屏障 - 视网膜屏障。我们的工作表明,体内噬菌体显示与微透析结合使用,可用于发现能够渗出和组织渗透的血管归巢肽的发现。
在上个世纪,混凝土一直是最成功的建筑材料。它的独特特性使其成为非常有效且适应能力的资产。然而,在近几十年中,人们对这种材料的保存越来越兴趣,目的是提高其性能。具体来说,全球关注的是保证该材料在暴露于侵略性环境或遇到严重服务条件的结构中的长期性能,因此,降低了维修和维护任务的高成本。通过直接影响其耐用性的物理和/或化学过程增强了混凝土的恶化。混凝土的耐用性受到其毛孔的结构,更具体地遵守其分布,形状和大小。因此,混凝土的孔结构建立了引起混凝土恶化(离子,气体和水)的主要有害药物的运输特性[1,2]。已经研究了许多方法和策略,以延长混凝土结构的使用寿命。因此,在施工领域中,采用的主要方法之一是使用高性能混凝土(HPC)。这种混凝土在其配方中使用了各种类型的混合物和低水/水泥(w/c)的比率,其特征是它们具有低渗透能力和高强度[3,4]。另一种最常用的策略是使用涂料或表面处理。这些有
摘要:每分每秒,我们都见证着化石燃料和碳排放对全球环境的影响,世界各国对此作出回应,制定了雄心勃勃的目标,以实现零碳和节能。与此同时,电动汽车 (EV) 的开发是实现这一雄心勃勃的目标的可能解决方案,即创造更清洁的环境并促进更智能的交通方式。转向完全基于电动汽车的移动行业和经济这一绝妙想法带来了一系列需要解决的问题。这些问题包括增加发电量以满足预计的消费增长,以及开发足够大的基础设施来满足由于电动汽车的市场渗透而产生的更高电力需求。车辆到电网 (V2G) 是一个在当前情况下主要处于测试阶段的概念。然而,它似乎为移动行业带来的问题提供了一个解决方案,而不断增长的电动汽车车队将占主导地位。此外,电动汽车与电网的整合似乎提供了各种成本和环境方面的好处,同时通过在高峰时段利用停放的电动汽车的闲置能量来协助电网。本评论旨在介绍此类系统的一些可能的辅助服务潜力,同时讨论 V2G 技术的潜在挑战、影响和未来市场渗透能力。
背景:多药耐药性(MDR)已成为癌症治疗中的主要障碍,这有助于癌细胞对化学治疗药物的敏感性降低,这主要是由于药物外排TRAPTOPLERS的过表达。基因疗法和化学疗法的结合被认为是通过逆转MDR效应来提高抗癌功效的潜在方法。材料和方法:AS1411适体官能化的胶束是通过乳液/溶剂蒸发策略来构建的,用于同时进行Dox Obicicin和miR-519c的共同交付。使用肝细胞癌细胞系HEPG2作为模型,基于体外和体内主动靶向能力和MDR的抑制探索了胶束的治疗功效和相关机制。结果:通过以AS1411适体依赖性方式专门识别核仁素,证明胶束具有有利的细胞摄取和肿瘤渗透能力。此外,由于miR-519c抑制了ABCG2介导的药物外排,因此,阿霉素的细胞内积累得到了显着改善,从而导致有效抑制肿瘤生长。结论:胶束介导的阿霉素和miR-519c的共递送提供了一种有希望的策略,可以通过主动靶向函数和MDR的恢复获得理想的抗癌功效。关键字:胶束,适体,核苷,多药耐药性,肿瘤靶向
亮白有效成分 4MSK 渗透肌肤 资生堂开发了“4MSK/液体渗透技术”,可增强公司独家研发的亮白有效成分 4MSK(4-甲氧基水杨酸钾盐)*1 渗透到肌肤中的能力。这项创新技术将室温下呈固态的 4MSK 与其他成分结合,使其液化,即使涂抹在皮肤上也能保持液态(图 1)。已经证实,通过这项技术,渗透到皮肤中的 4MSK 的量会增加,亮白效果也会增强。这项研究的部分结果在伦敦举行的第 32 届 IFSCC *2 大会(2022 年 9 月 19 日至 22 日)上进行了展示。在展示后提交给 IFSCC 杂志(2023 年)的论文 *3 获得了 2024 年亨利·马索奖,该奖项授予年轻研究人员。未来,资生堂将应用这项研究中开发的新型渗透增强技术,提供具有出色渗透能力的安全、可靠的高性能护肤产品。 *1 2003 年,日本厚生劳动省批准的一种成分,作为抑制黑色素生成和预防黑斑和雀斑的准药品有效成分。 *2 IFSCC:国际化妆品化学家协会联合会 *3 A. Okishima、T. Okamoto 等,IFSCC 杂志,26 (1)71-75 (2023) IFSCC
乳果糖是一种合成的二糖,由半乳糖和果糖通过 β-1,4-糖苷键连接而成。它是天然乳糖乳糖的异构化产物,乳糖是乳果糖生产的起始物质。由于乳果糖不能在小肠中被酶分解,因此完整的分子到达大肠后被结肠细菌代谢为相应的单糖,然后代谢为短链脂肪酸 (SCFA)、氢和甲烷 [5-7]。乳果糖的天然通便作用主要源于其渗透能力,可导致水分滞留,从而使粪便变软,并具有蠕动激活作用。此外,难消化的二糖在结肠中的代谢会导致腔内气体形成和渗透压增加,同时降低腔内 pH 值,从而缩短肠道转运时间 [1,8]。乳果糖还能有效减少肠道氨的产生,因此可用于预防和治疗肝性脑病 (HE) [5,6]。乳果糖的代谢作用似乎与剂量有关 [6]。虽然较低剂量(2 克/天以上)就能产生益生元作用并增强钙和镁等多种矿物质的吸收,但 10-30 克/天的中等剂量会产生用于治疗便秘的通便作用,而 60-100 克/天的高剂量则具有用于治疗 HE 的解毒作用 [5,6,9]。
引言和背景:理解火星气候发展中最重要的综合性之一是似乎高度矛盾的双重情景 - 诺阿西(Ln)(Ln)(Ln) - 过时的hesperian(eh)环境气候和历史(图。1)。是广泛的河谷网络(VN)及其经常相关的封闭式湖泊(CBL)和开放式湖泊(OBL)[1-3]的广泛案例和丰富的地理证据[1-3],并与高度的影响曲局和Landgrada-teisis compland/and and-semient and and and and and and and and and and and and and and Arifient and Ariend and Ariend and Ariend and Ariid a”气候”(WW模型)[5]具有平均年度温度(MAT)> 273K,并且降雨超过LN-EH中的Regolith引起径流并形成VN-CBL-OBL的渗透能力,然后再过渡到今天[6] [6]。另一方面,全局临床模型(GCM)指出了相对于今天(微弱的年轻太阳; fys)[7-9]的低太阳能死亡的重要性[7-9],并预测了MAT 〜225 K(图。1)和绝热冷却效果(ACE),导致高地中的雪和冰的沉积和保留[7-9]。在这些冷冰(CI)模型中,环境气候在水的273 K熔点下方48 K(图1),并且在没有某种瞬时因子的情况下显得稳定,以诱导IH和径流熔化以产生VN- OBL-CBL。
全球能源需求要求能源领域进行重大转型,这是由于可再生能源以及对电动汽车的越来越重视发电而在很大程度上驱动的。出于以前的关注,人们正在寻找可能的解决方案,从传统的化石能源集中式系统转向基于可再生能源的发电。尽管可再生资源(例如太阳能和风能)现在正在取代以前由化石燃料保留的角色,但是当太阳下山或风闲置时,仍然需要化石燃料。从可再生能源发电的间歇性需要开发储能技术,这使电力能够运送并按需交付,并能够到达偏远的农村地区。另一方面,在过去十年中,电动汽车成为一种更加环保的选择,可以预期运行规范会发生深刻的变化。因此,在储能中的前沿技术的发展是使他们能够在商业世界中更广泛地采用的关键。在过去的几十年中,传统的抽水水力技术曾经是唯一可以通过解决可再生能源渗透有限的渗透能力来重塑能源部门的唯一可行的能量存储。但是,这项技术最终将市场份额失去了新兴技术,主要是由于其地理限制。现在的重点已放在与此重点完全符合的电化学存储上。颠覆性技术在设计方面的灵活性,性能的逐步变化以及良好的可靠性相结合被认为是至关重要的。作为电化学能源存储中的最新技术,可充电锂离子电池(LIBS)在从燃料基社会迅速过渡到独家全电动维度的迅速过渡中起着重要作用,这是化学奖励2019年诺贝尔奖。,由于高能量密度,良好的可靠性和轻巧的特征,他们已经广泛渗透到市场上。实际上,LIB在1900年代首次由Sony商业化,最初是作为便携式电子产品和
肿瘤治疗仍是世界级挑战之一。在过去的几十年中,纳米药物递送系统在控制药物释放、降低毒副作用、提高治疗效果方面展现出巨大的潜力。纳米粒子(NPs)的可控性和设计灵活性在生物医学应用的精准药物递送平台的开发中引起了越来越多的关注。肿瘤血管内皮的不完整结构为NPs分布到肿瘤部位提供了可行性,而增强渗透和滞留(EPR)效应是NPs递送到实体肿瘤的主要原理。1然而,纳米药物在肿瘤治疗中尚未取得令人满意的治疗效果,这主要是由于在肿瘤内蓄积不足或渗透性差。 2实体肿瘤具有细胞外基质(ECM)密度高、间质液体压力(IFP)高、血管系统异常、淋巴引流受损等特点,3这些对纳米药物在肿瘤内有效蓄积和渗透构成了巨大的障碍。因此,研究人员致力于调节NPs的粒径、形状、表面物理和化学性质来改变其吸收、分布、代谢和排泄行为,以提高治疗效果。粒径是影响纳米药物递送系统最显著的因素之一,包括NPs的血浆清除率、体内分布、EPR效应、组织扩散以及细胞内化等影响。4许多研究证明,粒径在30至200nm之间的NPs可以通过EPR效应有效到达肿瘤部位,但是在这样的粒径范围内,NPs的保留和渗透能力有很大差异。粒径较小的NPs(<50nm)虽然能够深入肿瘤深层,但是由于细胞流出和回流至外周血管,导致其滞留效果较差。5,6相反,粒径较大的NPs(>100nm)在肿瘤内具有较强的滞留效果,因为它们容易被困在肿瘤细胞间的基质中,不易回流被细胞排泄,但同时这些大颗粒又不能深入肿瘤内部。7,8传统的固定尺寸的NPs很难平衡蓄积和渗透,针对这一问题,研究人员提出了一系列智能调节NPs尺寸的策略,包括尺寸增大策略和尺寸收缩策略。这些策略一般为:
应用。土壤水分含量会影响生物圈的生理生物成分,并通过表面能和水分通量将地球表面与大气联系起来。SM 是大气的水源,通过陆地的蒸散,包括植物蒸腾和裸土蒸发。此外,SM 条件可以通过控制土壤的渗透能力和将降雨分配到径流来影响陆地表面的水文模式。生态水文学侧重于植被 - 水 - 气候关系之间的联系,已发现其对 SM 动态可用性具有复杂的依赖性(Garcia-Estringana 等人2013 年;Mulebeke 等人2013 年)。所有这些过程都高度体现了 SM 的非线性行为和复杂的反馈机制。因此,SM 的量化条件是建模农业、水文气候和气象属性的重要输入。一组成分以不同的时间和空间尺度控制陆地表面 SM 的动态。因此,天气和气候的变化都受到 SM 条件的影响。Reynolds (1970) 将 SM 分为静态(例如土壤质地和地形)和动态(例如降水和植被)控制要素。对 SM 的评估取决于相关变量的状况。这些元素中的许多都是相互关联的,并且在空间和/或时间上各不相同,这使得识别 SM 模式及其驱动变量之间的关系变得复杂。2021 )。景观要素,包括地形、植被和土地利用,是 SM 的空间和时间控制要素。SM 的空间变化与地形特征(例如坡度、海拔和地形湿度指数)密切相关。因此,在以前的一些研究中,地形属性被用于通过回归、地理空间和水文建模来估计 SM 模式的参数(例如,参见 Western 等人。1999 、2004 ;Adab 等人。2020 ;Li 等人。此外,各种研究都注意到了植被覆盖(例如类型和分布)对 SM 变化的影响。此外,空间属性对植被的影响(通常从遥感图像中解释)也被用于生成 SM 模式(Mohanty 等人。2000 ;Hupet & Vanclooster 2002 )。通常,SM 的长期时间序列可以在空间上检测到与天气或水文条件。在较大的研究区域中,网络和测量 SM 的种类仍然受到限制,此外,由于过度变化和参数之间缺乏相关性,从现场测量中获得可靠的近似值是一项具有挑战性的任务。在 SM 的几个应用中,各种各样的卫星产品都有可能帮助水文学家测量大面积的 SM 状况。由于遥感器无法直接测量 SM 含量,因此需要提取可以解释测量信号和 SM 含量之间关系的基于数学的方法来解释测量信号和 SM 含量之间的关系。2021 ; Zhu 等人。2021 )。自 20 世纪 70 年代以来,已经开发出一些遥感技术,通过测量从光学到微波领域的电磁波谱特定区域来分析和绘制 SM(Musick & Pelletier 1988;Engman 1991;Wang & Qu 2009)。微波遥感技术包括 Aqua 卫星上的先进微波扫描辐射计-地球观测系统 (AMSR-E)(自 2002 年起)、土壤湿度和海洋盐度卫星(SMOS,自 2009 年起)、多频扫描微波辐射计(MSMR,自 1999 年起)和土壤湿度主动被动 (SMAP)(自 2015 年 1 月起),目前正在运行,每天在全球范围内生成卫星记录。虽然这些方法提供了许多测量大规模 SM 的技术,但它们的分辨率几乎很低(通常约为 25 公里),不再适用于小集水区或学科尺度。光学/热红外遥感记录被称为表面温度/植被指数法,可提供更高的分辨率(约 1 公里)。最近,Zhang & Zhou(2016)提出了一种新方法,可以通过光学/热遥感进行 SM 估计,该方法特别依赖于 SM 与表面反射率和温度或植被指数之间的关联。该领域的检索策略,如热惯性,强调土壤热特性或三角测年技术,表明 SM、归一化差异植被指数 (NDVI) 和给定区域的陆地表面温度 (LST) 之间的联系正在不同的应用中使用。然而,由于缺乏足够的空间数据(包括地形或低密度植被覆盖图和数据),它们的应用受到限制。用于估计 SM 的遥感植被指数(例如,NDVI、归一化差异水指数 (NDWI) 和归一化多波段干旱指数 (NMDI))是合适的替代方案;然而,SM 的分布不能通过单一参数和通过计算出特定地表坡向强度之间的参数修改来预测。人们已经做出了大量努力,通过建立遥感 LST 与植被指数之间的联系来利用卫星图像估计 SM(例如,Dari 等人。遥感图像的实际优势之一是,除了地形数据外,还可以通过图像获得具有高空间分辨率(30 米至 1 公里)的植被和 LST 参数。利用从遥感图像中提取的结构化景观因素而不是现场测量来预测 SM 状况,可以快速实时地跟踪 SM 状况。