这项工作根据零信任原则研究了基于云的环境的安全性。可能是确定漏洞并分析安全模型能够保护敏感数据并满足GDPR等法律要求的程度。通过穿透测试,检查了系统的核心组件,包括gitlab和openVPN,并使用诸如NMAP和BURP Suite之类的工具进行了检查。结果表明,零信任体系结构通过访问控制和验证提供了很高的安全性。SSL/TLS配置的测试表明,它们符合现代标准,而组件中的Auppentation和Encryption的管理确认了高安全级别。建议包括改进记录机制和定期审查访问政策以进一步降低风险。工作有助于创造更安全,更调节的云。
I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。 独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。 可持续的能源技术和评估,2020,42,pp.100884。 10.1016/j.seta.2020.100884。 hal-02981480I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。可持续的能源技术和评估,2020,42,pp.100884。10.1016/j.seta.2020.100884。hal-02981480
微生物不断在外部渗透压相差悬殊的环境之间转换。然而,目前还缺乏将物理约束和生物调节相结合的微生物渗透反应理论。我们在此提出了这样一种理论,利用被动反应和主动调节的时间尺度分离。我们证明,渗透调节物质的产生和细胞壁合成的调节有助于细胞应对细胞内拥挤效应并适应广泛的外部渗透压。此外,我们预测了一个阈值,高于该阈值细胞就无法生长,这种阈值在细菌和酵母中普遍存在。有趣的是,该理论预测,由于细胞壁合成调节,外部渗透压突然下降后,细胞生长会急剧加速。我们的理论合理化了裂殖酵母在振荡渗透扰动后观察到的异常快速生长,预测的生长率峰值与实验测量值定量匹配。我们的研究揭示了渗透反应的物理基础,对微生物生理学产生了深远的影响。17
图1来自DEL MAR和SMM800的甲烷渗氧化甲烷的厌氧甲烷氧化活性。原位AOM指标和CH 3 D速率测量值表征低到高AOM活性碳酸盐。a)渗透碳酸盐收集站点Del Mar(浅绿色标记)和圣莫尼卡Mound 800(SMM800,深绿色标记)位于相距129公里。从Google Maps获得的地图。b)生物地球化学渗透碳酸盐设置。c)c)del mar露头,R1和R2的原位图像起源于顶部,R3和R4,从较近的沉积物。d)R9,来自附近的Del Mar区域,硫化垫有氧化垫。e)烟囱和f)原塑料是两个类似化学的结构,是从圣莫尼卡丘800的不同侧收集的。烟囱恢复后用甲烷积极冒泡。对于比例尺,图像中的红色激光点相距29厘米。g)基于:CH 3 D + SO 4 2-HCO 3- + HS- + HDO,在与单氧化甲烷的缺氧孵育中测量的厌氧甲烷激活率(NMOL D CM -3 D -1)。我们在五个时间点上测量了水的ΔD,除非另有说明,否则从线性增加的速率计算了速率。错误条显示了从线性回归计算出的K的标准误差。分别将带有不同颜色的R9,R9.1和R9.2的两个子样本孵育为AOM速率。无法重建用于费率的R9件的方向。在最后一个时间点(T4)硫化物进行测量,并在R9.1,Chimlet顶部,中间,底部和原子质表面中检测到。在检测下,冲浪。*在T4上仅检测到背景高于背景的氘,表明R2和R3。,B.D。的非线性增加。表面,int。内部,BTM。底部
像所有当前的工业系统一样,农业绝大多数依赖于可控资源(主要是化石燃料和电网电力)的能源供应。可以从这些来源提供的电源,以完全匹配需求系统的电源需求时机。能量过渡在很大程度上包括替换可再生能源(本质上是间歇性)来控制的来源,从而导致瞬时功率生产和需求之间的连接。储能是平衡生产和需求并维护需求系统的运营条件的潜在解决方案。在本文中,我们量化了可再生电源(太阳能和风能)对标准家禽农场运行的影响。考虑到家禽和当地天气数据的生长状况,包括温度,风速和太阳辐射,为发电和需求的平衡建模。我们评估了可再生电源供应在发电厂尺寸的功能,风能到极性发电混合和能源存储的情况,并评估电源模式对需求系统运行强度(生产力)的影响。我们表明,在存储容量有限的情况下,可以实现不可忽略的可再生能源份额,而不会在农场生产率上重大损失。然而,与年度需求相比,完全过渡到可再生能源将需要i)large储能的组合,ii) - 发电厂的大量过大尺寸和iii) - 排除发电组合(风/太阳能)偏离需求时机。存储和发电厂的尺寸更为关键。在年底之前,有用的储能与未使用的储能的比率随农场的能量混合和运营强度(生产力)而异。我们提出了不同能量配置对需求系统性能的含义。
1。摘要………………………………………………………………………………….4 2。简介………………………………………………………………………………………………………5 3。文学评论…………………………………………………………………………………………………………………………数据…………………………………………………………………………………………9 5。方法…………………………………………………………………………结果……………………………………………………………………结论………………………………………………………………………………附录…………………………………………………………………………………………………………24 9。参考文献………………………………………………………………………………………………………………29
亮白有效成分 4MSK 渗透肌肤 资生堂开发了“4MSK/液体渗透技术”,可增强公司独家研发的亮白有效成分 4MSK(4-甲氧基水杨酸钾盐)*1 渗透到肌肤中的能力。这项创新技术将室温下呈固态的 4MSK 与其他成分结合,使其液化,即使涂抹在皮肤上也能保持液态(图 1)。已经证实,通过这项技术,渗透到皮肤中的 4MSK 的量会增加,亮白效果也会增强。这项研究的部分结果在伦敦举行的第 32 届 IFSCC *2 大会(2022 年 9 月 19 日至 22 日)上进行了展示。在展示后提交给 IFSCC 杂志(2023 年)的论文 *3 获得了 2024 年亨利·马索奖,该奖项授予年轻研究人员。未来,资生堂将应用这项研究中开发的新型渗透增强技术,提供具有出色渗透能力的安全、可靠的高性能护肤产品。 *1 2003 年,日本厚生劳动省批准的一种成分,作为抑制黑色素生成和预防黑斑和雀斑的准药品有效成分。 *2 IFSCC:国际化妆品化学家协会联合会 *3 A. Okishima、T. Okamoto 等,IFSCC 杂志,26 (1)71-75 (2023) IFSCC
Element 16 Technologies, Inc.(Element 16)成功开发并展示了一种新型长时储能技术,该技术使用单罐配置的硫磺来经济高效地储存和调度可再生能源电力。核心创新是利用石油和天然气工业中丰富的废副产品硫磺,大幅降低 Element 16 热能储存的成本。该团队建造并测试了一个中试规模的 1.5 兆瓦时硫磺热电池装置,该装置集成了一个电加热器,旨在利用可再生能源发电产生的可变多余电力进行充电。储存的热量通过小型低温发电装置转化为电能,该装置也可直接用于工业过程热脱碳。
图3:CO 2和O 2跨动态O功能化孔的易位。CO 2和O 2的易位速率通过多孔石墨烯的温度函数(a)孔隙10,(b)孔-13和(c)孔-16。平均力(PMF)曲线的潜力(pore-10,(e)孔-13,(f)孔-16和O 2分子(g)孔-16)的co 2分子易位。多孔石墨烯位于z = 0,区域z> 0和z <0分别描绘了饲料和渗透的侧面。自由能屏障(∆A t),用于(H)CO 2至Pore-10,孔-13和孔-16和(J)CO 2和O 2至孔-16的易位。CO 2的易位速率是通过多孔石墨烯托管动态和刚性(J)孔隙10,(k)孔-13和(L)孔-16的易位。