如今,航空业面临着许多挑战。竞争加剧和资源短缺对未来的制造技术和轻量化设计提出了挑战。应对这些情况的一种可能性是激光增材制造 (LAM) 制造技术。然而,由于工艺新颖,仍然存在挑战需要应对,例如开发更多材料,特别是轻质合金,以及新的设计方法。因此,为了充分利用工艺潜力,创建了创新的材料开发和轻量化设计方法。材料开发过程基于对温度分布与有效工艺因素的分析计算,以确定 LAM 工艺的可接受操作条件。通过将结构优化工具和仿生结构纳入一个设计过程,实现了一种极轻量化设计的新方法。通过遵循这些设计原则,设计师可以在设计新飞机结构时实现轻量化节省,并将轻量化设计推向新的极限。
当可再生能源(风能和太阳能)的份额不断增加时,需要储能技术来确保能源系统的稳定性。液态空气储能 (LAES) 是一种很有前途的电能储存技术,具有高能量密度和不受地理限制等优点。然而,独立 LAES 的一个缺点是往返效率 (RTE) 相对较低。在本文中,研究了具有不同压缩和膨胀级数的独立 LAES 系统的性能。所有情况都使用粒子群优化 (PSO) 算法进行优化。最优结果表明,当 LAES 系统中有 2 级压缩机和 3 级膨胀机时,可获得最高的 66.7% 的 RTE。当压缩级数固定时,当膨胀段预热器中的热流和冷流具有接近平行的温度分布时,可获得最高的 RTE。
光纤可用作应变和温度传感器,在结构健康监测中引起了广泛关注,尤其是在大型土木工程和基础设施应用中 [1, 2, 3]。最近,人们对将光纤用于嵌入式传感应用产生了兴趣,用于小型金属零件在工程应用中监测应变和/或温度分布。增材制造工艺非常适合嵌入光纤,因为它们可以在光纤周围或上方沉积材料。因此,光纤传感器可以放置在零件内部,从而获得更详细的应变和温度信息。此外,通过使用光频域反射法 (OFDR),一种能够确定沿光纤长度分布应变测量值的传感技术,可以通过嵌入在零件中的光纤传感器连续确定应变分布和集中度。
摘要。这项研究的主要目的是使用Monte Carlo方法估算表面温度测量的不确定性。计算基于一组具有共同加热壁的平行微型通道中流体流动过程中传热的实验研究。使用红外热力计和K型热元同时进行加热壁表面上的温度分布。红外热成像是非接触式温度测量方法,而热元测量是接触方法(在选定点的测量)。提出并讨论了两种温度测量方法的示例结果。在计算中,使用蒙特卡洛方法来估计表面温度测量不确定性的不确定性。对蒙特卡洛模拟结果和不确定性扩散方法进行了比较分析。发现从这两种方法获得的结果是一致的。
摘要:本研究的主要目的是通过对钛酸锂离子电池内部产热的实验测量来说明钛酸锂离子电池组内的冷却机制。选择介电水/乙二醇(50/50)、空气和介电矿物油用于钛酸锂离子电池组的冷却。考虑了不同的流动配置来研究它们的热效应。在钛酸锂离子电池组中的锂离子电池单元中,采用了与时间相关的产热量,作为体积热源。假设电池组内的锂离子电池在所有模拟中具有相同的初始温度条件。通过 ANSYS 模拟锂离子电池组,以确定冷却系统和锂离子电池的温度梯度。模拟结果表明,流动布置和流体冷却剂类型会显著影响锂离子电池组的温度分布。
使用数值分析比较了具有不同内部结构的七个水冷微型冷水冷板的热和液压性能。最近对高性能计算的需求不断提高,导致电子设备的热管理挑战。除了危险的片上温度,异质整合和升高温度(热点)的局部区域还导致芯片级温度分布不均匀。结果,电子设备的寿命和可靠性受到不利影响。由于限制了气冷散热器,开发了几种新方法,例如液体冷却的微通道冷板,以解决这些挑战。这项工作的目的是提供比较的数值研究,以了解不同微型通道冷板内部结构在具有不均匀功率图和热点的芯片的热管理中的有效性。冷板热
我们如何利用经典的分子动力学模拟来模拟和分析控制多晶硅沉积参数对沉积多晶硅膜结构的影响的现象和机制。多晶硅膜的晶粒形状和大小、结晶度、晶粒边界结构和应力取决于生长温度、生长膜中的温度分布、沉积通量、通量变化以及由于沉积通量而传递到膜表面的能量。主要结果包括:(i)沉积的多晶硅薄膜的结晶度分布对应力、温度和沉积流不同参数的依赖性,(ii)沉积初期的生长模式,(iii)多晶硅薄膜沉积初期种子晶粒的相互作用和稳定性以及从孤立晶粒生长到多晶硅生长的过渡,(iv)不同硅相的温度、结晶度、晶体形状和热导率的相互作用,(v)描述了晶粒生长的四个不同阶段:成核、生长、消失和延迟。
由于纳米流体在工业和工程领域有广泛的用途,其在拉伸表面上的流动引起了广泛关注。近年来,磁流体动力学纳米流体中的传热和传质已成为研究的重点。本研究考察了在辐射和化学反应作用下,二维磁流体动力学纳米流体在拉伸板上的稳定流动。相似变换用于将偏微分方程转换为常微分方程,这些方程由 Mathematica12.0 求解。在视觉层面上,研究了不同无量纲参数对无量纲速度、温度和浓度分布的影响。观察到,热辐射增强了温度分布,而化学反应降低了浓度。随着辐射和化学反应的影响增加,物理参数(即努塞尔特数)减小,舍伍德数增加。在几种特殊情况下,将得到的数值结果与以前发表的结果进行了比较,发现结果非常一致。
与其他方法(传导和对流)相比,红外辐射(IRD)的热干燥具有许多优势,例如减少加热时间,均匀的温度分布,降低的产品质量损失,区域加热的灵活性,简单的设备,紧凑,紧凑并节省能量[1]。ird用于不同的食物加工过程,例如干燥,烘烤,烫,蒸,蒸和巴氏杀菌[2]。IRD辅助对其他加热方法(微波炉,传导和对流)将提高能源效率。此外,IRD非常成功地用于干蔬菜,例如土豆[3],红薯[4],洋葱[5],猕猴桃和苹果[6],蔬菜,肉,鱼,意大利面。ird也已用于分析食品中的水分含量[7]。影响了薯片干燥动力学的因素[8],马铃薯的干燥速度的增加取决于增加辐射源的表面温度。在带有IRD的干虾中,当辐射板和气温升高时,辐射距离的影响并不那么重要[9]。
本研究旨在建立一系列小尺度试验,分析纵向通风条件下匝道坡度对模型支隧道内液化石油气火灾温度分布的影响。试验条件下热释放率达到2.57~7.70 kW,设置0%、3%、5%、7%和9%五个匝道坡度。对于特定的分岔角,测量并分析了分岔角前扩展区内火灾最大超越温度。结果表明:主隧道内最大超越温度随匝道坡度减小而升高,这主要是由于烟囱效应增强了空气的卷吸,加速了烟气流动。此外,根据试验结果,建立了考虑匝道坡度影响的支隧道火灾最大超越温度修正模型。预测结果与主隧道试验研究结果一致。研究结果可为分支隧道排烟策略设计提供参考和帮助。