气候变化显着影响我们的农作物及其耕种地区,预计到本世纪末将有很大变化。温度条件果断地影响了给定位置中葡萄的安全适用性。为了解决这些变化,我们分析了四个温度指标的时间变化:平均生长季节温度(AGST),增长程度天(GDD或Winkler指数(GDD-WI)(GDD-WI),HUG LIN INDEX(HI)(HI)以及在1971年至2100年的22个匈牙利葡萄酒区域(BEDD)和生物学上有效的天数(BEDD)。该分析基于RCP 4.5和RCP 8.5方案的14个气候模型的数据。为了调查葡萄酒的未来适用性,我们引入了动态适用性函数,这使我们能够分析生长季节中平均温度的适用性,以纪念21种葡萄酒葡萄品种,从2031年到2100种decadal增量。此外,基于生长季节的平均温度,引入了温度影响函数,以表征21种葡萄酒葡萄品种的适用性,其值范围从0到1。结果证实,葡萄种植中使用的温度指数的频率将来会明显转向更温暖的气候类别。越来越温暖的气候带来了某些优势,但也具有日益增长的耕种风险。在最乐观的情况下,在接下来的七十年中,生长季节期间的平均温度可能会降低0.8°C。然而,在最悲观的模型中,预期的变化到本世纪末的变化超过4.0°C。对于较低热量需求的葡萄酒葡萄品种,在悲观的RCP 8.5发射方案下的适用性预计将在本世纪末降低29%。相反,在乐观的情况下,适用性值的下降仅在3-4%之间。对于具有较高热量需求的葡萄品种,在RCP 8.5方案下,适用性将降低10%。相比之下,RCP 4.5场景表明,到本世纪末,适用性可以提高1-2%。这些发现有助于更好地理解气候变化的影响和后果,并就如何为葡萄栽培部门的这些挑战做准备的见解。
在他们的研究中,科学家专注于果蝇的嗅觉电路,因为嗅觉决定了这些苍蝇的重要行为模式,对于它们的生存至关重要。他们发现,昆虫在p阶段暴露于昆虫的温度不仅对脑发育,而且对气味驱动的行为有影响。
强度和温度之间的关系对于信息各种身体过程至关重要。随着电力被转移到系统中或从系统中传递,它会影响小工具的温度,从而改变其国家。这种相互作用对于诸如热发动机和制冷等知识程序并不是最关键的,但是在知识现象以及截面过渡,化学反应和气体的行为以及这种探索中,我们将在探索中表现出重要的功能。我们将主要研究能源,主要在热的形式内影响控制这些相互作用的温度和原理的能量。将探索包括独特的温暖能力,潜在的温暖和热力学定律,从而提供有关功率如何影响温度变化和系统达到热平衡的方式的洞察力。通过研究这些原则,我们可以更高地绘制关闭驱动数量在众多热条件下的计数数字的基本机制。
•连续监测和记录•具有液体(甘油或甘油)或松散培养基(玻璃珠或沙子)或固体(Teflon或铝)的缓冲探针。这些缓冲材料测量了小瓶中疫苗的温度,而不是疫苗单元中的气温。•可以从单元外部轻松读取的数字显示•在(+/- 1°F)内(+/- 1°F)(+/-。5°C)精度•显示当前的最低和最大温度读数•最小/最大显示器的重置按钮•至少4,000个记忆存储•至少4,000个读数•至少读取范围读取量•用于范围内的温度•较低的速度速率/较低的速度速度•降低速度•绘制范围•彩色范围•彩色彩色范围<彩色彩电率<彩绘效率<
- 简要说明申请人的研究兴趣和申请该职位的动机; - 两名裁判的名称和联系信息(其中之一应该是硕士论文或等效论文的主要顾问); - 简历; - 成绩单和文凭,显示了学士学位和硕士学位的完成(如果您尚未完成硕士学位,请提交您机构的声明,以确认已提交硕士学位的论文); - 相关证书/参考; - 任何科学性质的作品清单(出版物列表)。
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
I.在高性能计算系统,数据中心和其他短距离光学网络中,垂直腔表面发射激光器(VCSEL)是高速和功率的高速和功率短次光学互连(OIS)的首选光源[1]。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络[2]和光网络,需要在温度较大的范围内运行,例如从-40到125°C。VCSEL是OI温度敏感的组件,成本和功率效率所需的未冷却/未加热的操作,因此需要在温度依赖性降低的VCSEL上,在温度范围更大的情况下运行。在高温下降低温度依赖和改善的VCSER性能也将使基于VCSEL的光学收发器在高性能计算系统中的共包装受益[3]。
生物多样性损失和气候变化是对生态系统功能和稳定性最令人震惊的威胁之一。但是,这些因素通常是分别研究的,忽略了物种灭绝与生态系统气候变化之间的潜在相互作用。在这里,我们评估了不同温度方案如何影响微生物多样性与生态系统功能之间的关系,从碳(C)循环功能的温度敏感性方面。我们假设更复杂的群落在两个温度状态下都促进了C循环功能的稳定性。我们没有观察到所有C周期过程对不同复杂性社区内温度升高的无处不在。虽然生长稳定,并且在复杂性水平上的温度升高时,呼吸率在较低的复杂性下比高温下的高复杂度更高。碳的使用效率既整合了生长和呼吸,往往随温度较低的温度而降低。共同的结果表明,在气候变化的情况下,社区复杂性对于维持C循环热反应的重要性。
几次学习(FSL)的目的是学习如何从少数培训检查中认可图像类别。一个核心挑战是,可用的培训检查通常不足以确定哪些视觉效果是所考虑类别中最具特征的。为了应对这一挑战,我们将这些视觉特征组织成方面,从直观地将相同的特征分组(例如,与形状,颜色或纹理相关的功能)。这是从以下假设中的动机:(i)每个方面的重要性因类别而异,并且(ii)可以从类别名称的预训练的嵌入中预测Facet的重要性。尤其是我们提出了一种自适应的相似性度量,依靠对给定类别的预测的重要性权重。该措施可以与各种现有的基于度量的甲基甲化组合使用。在迷你胶原和CUB上进行的实验表明,我们的方法改善了基于公制的FSL的最新方法。
这些监视器类似于当前在冷冻现代Covid货物中使用的监视器,并且它们在发货期间都监视着温暖和冷偏移。McKesson除了这些新显示器外,还将继续使用合格的冷却器并打包。