I. 简介 激光束在大气中的传播与光通信、成像和定向能系统 [1,2,3,4] 相关。大气介质中折射率的统计随机波动会损害这些系统的功能和运行 [1]。光束控制系统的功能之一是跟踪和保持目标上的瞄准点,使抖动值小于 λ/D,其中 λ 是激光波长,D 是激光束直径或出射光瞳处的孔径。其他研究人员 [例如,见 5] 已经认识到,穿过湍流大气的运动会对激光束产生抖动或整体角运动。大气由大小从数百米到毫米不等的湍流结构组成。由风切变和热羽流产生的大气大尺度结构会产生称为外尺度的涡旋结构。在最小尺度的湍流中,能量通过粘性作用而消散。最大尺度和最小尺度之间是惯性子范围,其中湍流被认为是各向同性的,并且适用柯尔莫哥洛夫理论。研究表明,柯尔莫哥洛夫速度扰动与密度变化有关,因此,密度变化通过格拉德斯通-戴尔关系线性地引起折射率波动。这些变化由折射率结构函数 𝐶 𝑛 量化
开发了一种人工智能 (AI) 控制系统,以最大限度地提高湍流喷射的混合率。该系统由六个独立操作的非稳定微型喷射执行器、两个放置在喷射器中的热线传感器和用于无监督学习近乎最优控制律的遗传编程组成。该定律的假设包括多频率开环强迫、传感器反馈及其非线性组合。混合性能通过喷射中心线平均速度的衰减率来量化。有趣的是,人工智能控制的学习过程按性能提高的顺序逐一发现了传统控制技术可实现的经典强迫,即轴对称、螺旋和拍打,最终收敛到迄今为止未探索过的强迫。仔细检查控制环境可以揭示学习过程中产生的典型控制定律及其演变。最佳 AI 强制产生复杂的湍流结构,其特点是周期性生成的蘑菇结构、螺旋运动和振荡射流柱,所有这些都提高了混合率并且远远优于其他结构。这种流动结构以前从未被报道过,我们从各个方面对其进行了检查,包括速度谱、平均和波动速度场及其下游演变,以及三个正交平面中的流动可视化图像,并与其他经典流动结构进行了比较。除了对微射流产生的流动及其对主射流初始条件的影响的了解之外,这些方面还为我们了解这种新发现的流动结构高效混合背后的物理原理提供了宝贵的见解。结果表明,人工智能在征服许多执行器和传感器的控制律的巨大机会空间以及优化湍流方面具有巨大潜力。
开发了一种人工智能 (AI) 控制系统,以最大限度地提高湍流喷射的混合率。该系统由六个独立操作的非稳定微型喷射执行器、两个放置在喷射器中的热线传感器和用于无监督学习近乎最优控制律的遗传编程组成。该定律的假设包括多频率开环强迫、传感器反馈及其非线性组合。混合性能通过喷射中心线平均速度的衰减率来量化。有趣的是,人工智能控制的学习过程按性能提高的顺序逐一发现了传统控制技术可实现的经典强迫,即轴对称、螺旋和拍打,最终收敛到迄今为止未探索过的强迫。仔细检查控制环境可以揭示学习过程中产生的典型控制定律及其演变。最佳 AI 强制产生复杂的湍流结构,其特点是周期性生成的蘑菇结构、螺旋运动和振荡射流柱,所有这些都提高了混合率并且远远优于其他结构。这种流动结构以前从未被报道过,我们从各个方面对其进行了检查,包括速度谱、平均和波动速度场及其下游演变,以及三个正交平面中的流动可视化图像,并与其他经典流动结构进行了比较。除了对微射流产生的流动及其对主射流初始条件的影响的了解之外,这些方面还为我们了解这种新发现的流动结构高效混合背后的物理原理提供了宝贵的见解。结果表明,人工智能在征服许多执行器和传感器的控制律的巨大机会空间以及优化湍流方面具有巨大潜力。
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用
摘要:屋顶压力统计数据是 ASCE 风荷载设计条款的基础,通常通过边界层 (BL) 风洞测试获得。然而,人们已经认识到一个长期存在的问题——不同 BL 风洞报告的结果不一致。请注意,这些 BL 风洞测试往往遵循标准设置,使用既定的仪器和设备测量缩小的建筑模型上的流量和压力,并使用通用方法处理数据。导致报告的压力统计数据存在不可忽略的差异的主要因素是什么?考虑到风洞数据在作为 CFD 工具验证的参考案例方面的作用越来越大,必须严格评估现有的风洞压力数据,并深入了解风工程界的这一突出问题。这项工作将重点关注 NIST 和 TPU 气动数据库中存档的模拟 BL 流入的孤立低层建筑模型的选定案例的屋顶压力数据的时间序列。结果包括瞬时压力、平均和 RMS 表面压力的直方图,以及由 Gumbel 模型根据屋顶上的压力抽头位置和风向估计的峰值压力。我们希望找出风洞测试中导致结果差异的主要因素,并帮助解决这一问题。关键词:风洞测试、数据不一致、NIST 气动数据库、TPU 气动数据库 1.简介 风洞测试创建了一个受控的、理想的、模拟的边界层流动条件,并使用缩放的建筑模型来重现感兴趣的风结构相互作用。对于风荷载试验,主要测量量包括局部表面压力和/或总力和力矩,以及模型所受的流入特性(风速剖面、湍流水平和频谱)。边界层风洞试验极大地促进了风荷载设计。然而,风洞试验结果的不一致性一直是风工程界公认的长期问题。例如,对来自六个著名风洞实验室的风压数据的变异性进行了比较,得出结果的变异系数在 10% 到 40% 之间(Fritz 等人,2008 年)。风洞结果的差异可以归因于风荷载测量和估计的多个方面。风洞可能受到实现 ABL 风的全光谱的能力限制(由于物理尺寸和缺少粗糙度细节而切断大尺度和小尺度的湍流结构)、相对较低的 Re 数范围以及与特定设备相关的不确定性。就低层建筑模型而言,高度与边界层气动粗糙度(H/z 0 Jensen 数)的比率在实用上非常具有挑战性。建筑特征和表面纹理难以建模,这可能会极大地影响表面的关键流动分离、重新附着和涡流发展