湖泊代表着至关重要的地表水资源和湿地的组成部分。这些区域降解的最令人关注的方面是湖泊的完全干燥。在地中海地区,在气候变化的背景下,土地使用实践的连续变化对湿地地区的影响很大。 在这项研究中,我们使用了Landsat TM,Oli和Oli-2卫星图像来监测表格中间图集的两个代表性湖泊(AOUA和IFRAH)的水表面积,并在整个研究区域绘制土地利用。 为了提取与湖泊和土地使用有关的信息,我们采用了支持向量机器机器学习算法,该算法广泛用于遥感研究中。 但是,我们使用世界气象组织(WMO)推荐的标准降水指数(SPI)从降水数据中确定了干旱期。 从Landsat卫星图像的加工中获得的结果表明,湖泊表面积有显着降低,而AOUA湖的干燥期则危害了其脆弱的生态系统和生物多样性。 两个湖泊的临界情况归因于自然和人为因素的结合。 对气候数据的分析表明,与1980年代的气候变化发生了重大变化,干旱长期。 同时,研究区域对土地利用方式进行了显着修改,主要以灌溉农业表面的显着延伸至损害放牧和雨养土地的损害。在地中海地区,在气候变化的背景下,土地使用实践的连续变化对湿地地区的影响很大。在这项研究中,我们使用了Landsat TM,Oli和Oli-2卫星图像来监测表格中间图集的两个代表性湖泊(AOUA和IFRAH)的水表面积,并在整个研究区域绘制土地利用。为了提取与湖泊和土地使用有关的信息,我们采用了支持向量机器机器学习算法,该算法广泛用于遥感研究中。但是,我们使用世界气象组织(WMO)推荐的标准降水指数(SPI)从降水数据中确定了干旱期。从Landsat卫星图像的加工中获得的结果表明,湖泊表面积有显着降低,而AOUA湖的干燥期则危害了其脆弱的生态系统和生物多样性。两个湖泊的临界情况归因于自然和人为因素的结合。对气候数据的分析表明,与1980年代的气候变化发生了重大变化,干旱长期。同时,研究区域对土地利用方式进行了显着修改,主要以灌溉农业表面的显着延伸至损害放牧和雨养土地的损害。在三十年中,灌溉农作物的面积从1985年的大约1300公顷增加到2022年的7070公顷,增加了542%。这项研究中提出的发现揭示了TMA中湖泊降解的程度,并反映了地下水水平令人震惊的下降。这种情况表明有必要制定保护中地图集的水资源和湿地的策略。
湖泊保护和恢复需要协调的努力。根据《双湖水质协议》(GLWQA),合作科学与监测计划(CSMI)协调大湖区的研究和监测,为资源经理提供科学以提供管理决策。州,省,部落和原住民,大学,区域组织等与美国和加拿大政府合作,以确定湖泊的需求。CSMI对每个湖泊的需求进行了深入的探讨,超出了常规的年度监测。
(Sche效和Carpenter,2003; Sche Quer等人,2001)。例如,当由于外部活动而缓慢地升高浅层湖中的营养水平时,它最终可能会碰到一个临界点,导致营养动力学改变,从而将湖泊从透明的湖泊转变为浑浊的湖泊。从更广泛的角度来看,Lenton等人。(2008)识别地球系统中的小费元素,例如格陵兰冰盖和亚马逊雨林,每个冰片都有独特的倾斜点。当权衡变更变量的潜在利益或成本与政权转变的经济影响之间的交易时,经济学变得相关(De Zeeuw and Li,2016年)。使用浅层湖的例子,在清晰的湖泊中进行娱乐和锻炼,它们也可能提供农业废水处理。然而,这些好处是将可能将湖泊转变为墨尔族人的州的警告。以常规动态优化为基础的管理理论有时会错过标记,假定独特的最佳解决方案(Levin等人。,2013年; Starrett,1972年)。这有可能监督多种潜在结果。但是,临界点经济学的最新发展应对这些挑战,拥抱这种非跨性别
讨论和动手技巧将重点关注:●从富营养化和全球变暖中流向水生系统的当前线程; ●减少磷酸盐措施; ●可持续的湖泊修复; ●水透明度作为生态系统健康的签名; ●天然组合的生物多样性; ●沿着水体的入侵物种的高度; ●盐湖和苏打锅的外观和消失; ●分析趋势所需的长期监控; ●湖泊作为气候变化的哨兵; ●缓解气候变化影响; ●沿海生态系统的沿海区域的作用; ●保护沿海芦苇区; ●浅湖与更深的湖泊,在这里造成差异的原因; ●芦苇和土地使用管理; ●自然保护以促进公众对淡水回流的认识; ●在多瑙河洪泛区的湖泊和河流中的可持续旅游概念。
Deep-C汇集了一个实验家和建模者的财团,以探索湖泊中的碳(C)循环,并在Centennial时期到千禧一代量表。特别是,我们对气候和土地使用的变化如何影响流域中的C循环,以及通过水,沉积物,碳和养分的变化也会影响连接的湖泊中的C循环。该项目涉及法国40个试点站点的湖泊监测网络。对湖泊沉积物核心的分析将允许重建土地覆盖率的变化和数百万年限的侵蚀率。模型将用于重现试点部位的土壤侵蚀,沉积物和碳转移的演变,以量化土地利用和气候变化对这种演变的影响,并将发现推断到区域,大陆和最终全球尺度上。后者将得到国际合作者网络的支持,该网络提供其他气候区域的其他数据。
优先关注事项和目标:• 水生入侵物种 (AIS) - 湖泊协会协调 - 船舶检查 - 湖泊改善区 (LID) 管理 - 教育与推广 • 地下水 - 化粪池维护与检查 - 硝酸盐和其他污染物检测 - 井口和饮用水源保护 - 未使用/废弃水井的密封 - 固体和危险废物处置
Wuhan位于中国中部,众所周知是“一百个湖泊”,拥有丰富的水资源和广泛的供水系统。但是,武汉的水管理和防水预防具有挑战性。Wuhan多年来一直遭受灌木丛的困扰,这主要是由于建筑面积低和降水的不均匀分布。快速的城市化加剧了水池。由于土地扩张而引起的天然湖泊的急剧缩小,降低了湖泊的调节和存储能力。将污水管和雨水管混合和误导,污水被排放到城市水通道中,从而导致水污染导致水管理系统恶化。迫切需要开发一种有效的水管理和防水系统。
古多样性 - 高山湖的生物多样性对全球变化的韧性:一种未来保护的古生态学方法,该项目建议通过在最后一个CA中跟踪湖泊社区Composi8on的变化来研究生物多样性的弹性。在四个菌群中有2。2.000年,具有应激源压力的史。我们将着重于人为变化(非NA8VE储备,基于牧场的牲畜压力和气候)以及这些变化引起的生物学反应的类型:逐渐或突然。我们将使用Mul8variate ordina8on技术与非线性8ME系列方法(分层概括ADDI8VE模型)相结合,以表征每个湖泊中社区反应的轨迹,并在跨湖中的此类轨迹中保持一致性。该项目将使用一个空间进行8ME方法,并与区域Informa8ON一起使用78个湖泊,并在沉积物记录中分析了Sedadna和Tradi8onal古杂质的代理。尚未详细研究三个压力源对高山湖泊的重视重要性。我们小组的先前结果表明,鱼可能会对生物多样性产生强大的影响,这是在引入小鱼时更高的。我们还表明,可以通过去除非NA8VE鱼类来恢复湖泊。然而,重要的是要知道何时完全恢复了Na8ve生物多样性,并且一旦消除了鱼类,其他压力源对恢复的影响是什么。此外,将环境压力源与湖泊生态弹性联系起来的研究已将侧重于单个SEN8NEN站点,这阻碍了对大型大面积的SPA8同步变化的研究。结果将为未来的Consera8on计划和关键湖泊的SELEC8ON提供专家标准,其对生物多样性Restora8on的兴趣最高,因为它具有最高的恢复Poten8al。博士主管的研究行:该提案的PI,将共同讨论候选人,涵盖了古多样性的主要主题。teresa buchaca是一位古菌学家和羊水学家,从事使用化学生物标志物(有机颜料)的photynthe8c生物社区Composi8ON的变化。她的研究包括在不同的SPA8AL和时间尺度上进行的研究。在区域规模上,她研究了浮游生物蓝细菌和藻类变化的帕兹恩人,以及在高山湖泊中的侵蚀作用。在古生态量表上,她一直在研究晚期系统,以研究如何调节记录的标记色素信号,以消除不同的全球变化压力源的影响(气候,Eutrophica8on和Fiffasions),并了解涉及长期环境变化的机制。,她在研究温带高山和低地欧洲湖泊,复活节岛和阿苏里亚地区的湖泊以及伊比利亚半岛的沿海湿地方面有经验。她正在共同领导一个在High Mountain Lake Assonsa8on上工作的研究小组。Marc Ventura是一名羊水学家和生态学家,在高山湖生态学中,使用不同模型的动物群(来自甲壳类动物,大型无脊椎动物,两栖动物和菲斯),在食品网层或物种水平上工作。他现在正在共同领导一个研究小组,主要是Fifs ristionuc8ons在高山湖的保护区工作。既描述了这些入侵的影响(Consera8on生物学或生态学),又将这种现象研究为局部
I.执行摘要II。湖泊细分市场和支流信息III。TMDL标准和分配IV。 环境水质趋势V.磷VI的土地覆盖分析和来源。 过去的实施和负载减少VII。 未来实施VIII。 图1。的自适应管理清单 湖泊细分市场的主要支流图2。 TMDL主要湖泊细分图3。 湖段总磷浓度趋势(1990 - 2019年)图4。 过去的实施项目(1995 - 2019年)图5。 英亩土地覆盖类型的湖泊段图6。 湖间分水岭的土地覆盖图7。 磷负载估算范围图8。 HUC 12分水岭估计的年磷载荷(kg/ear/年)图9. HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。 Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。 城市部门的加载(kg/acre/年)HUC 12流域图12. 化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。TMDL标准和分配IV。环境水质趋势V.磷VI的土地覆盖分析和来源。过去的实施和负载减少VII。未来实施VIII。图1。湖泊细分市场的主要支流图2。TMDL主要湖泊细分图3。湖段总磷浓度趋势(1990 - 2019年)图4。过去的实施项目(1995 - 2019年)图5。英亩土地覆盖类型的湖泊段图6。湖间分水岭的土地覆盖图7。磷负载估算范围图8。HUC 12分水岭估计的年磷载荷(kg/ear/年)图9.HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。 Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。 城市部门的加载(kg/acre/年)HUC 12流域图12. 化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。城市部门的加载(kg/acre/年)HUC 12流域图12.化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。在尚普兰湖流域的纽约部分表1。湖泊细分市场和主要支流的水质分类表2。tmdl in -lake浓度标准表3。纽约点的来源和非点源分配湖部门表4。纽约点源和非点源减少湖泊段表5。资助计划附录B。与TMDL标准相比,平均TP浓度表6。TP集中趋势的纽约主要支流趋势表7:尚普兰湖的有害藻华(2012 - 2019年)表8。国家资金摘要(1995 - 2019)表9。与TMDL分配表10相比HUC 12个子源源部门分析表11。废水设施TMDL废水分配和平均负载表12。废水设施分配交易表13。化粪池系统加载的参数和默认系数表14。估计季节性化粪池系统负载附录附录A。潜在的农业部门项目附录C.潜在的森林部门项目附录D.潜在的城市部门项目附录E.潜在的废水部门项目附录F.潜在的化粪池部门项目涵盖尚普兰湖盆地盆地计划的照片
目录序言I第1章简介1第2章生态原理7 2.1什么是可持续性?7 2.2生物多样性的值8 2.3生物多样性损失的原因:河马9 2.4环境伦理14 2.5什么是科学17 2.6生态系统如何工作?(生物因子和气候区)21 2.7适用于生态系统的能量基础22 2.8食物网25 2.9生态金字塔27 2.10 2.10进化28 2.11物种关系32 2.12种群和人口增长35 2.13营养周期35 2.13营养循环41 41第3章气候变化45章45章节45章节62章节和62章沿沿海地区和62章沿着沿海地区62级别的沿海地区8新鲜的河道8新鲜河道湖泊8新鲜的湖泊湖泊湖泊8新鲜的湖泊劳斯科群体: 109第7章温带和北方森林148第8章热带森林172第9章草原,沙漠和苔原199第10章生物多样性保护241 10.1生态系统拯救生物多样性242 10.2种类拯救生物多样性的物种方法256 10.3法律和国际协议268 10.4您可以拯救生物生物剂?273选定的参考文献274词汇表286索引