联合国大会(2015 年)制定了一项议程,其中包含 17 个目标,需要在全球范围内到 2030 年实现,以促进可持续的未来。实现这些目标需要设计和实施更有效的战略来管理复杂系统,包括人类及其社会、世界经济、城市地区、自然生态系统和气候(Gentili,2021a)。一项有前途的战略,即正在蓬勃发展的战略,依赖于人工智能 (AI) 和机器人技术的发展。人工智能帮助人类收集、存储和处理监测复杂系统不断演变所需的大数据(Corea,2019 年)。人工智能还帮助我们下定决心控制复杂系统的行为。硬机器人和软机器人让人类能够进入原本无法进入的环境。例如,它们帮助我们(1)研究其他行星的地球化学特征、考察海洋深渊以发现新的贵重材料和能源矿藏;(2)进入人体内部器官进行侵入性较小的手术;(3)在肮脏或危险的地方工作。开发人工智能的主要传统方法有两种(Lehman 等人,2014 年;Mitchell,2019 年)。第一种方法是编写在基于冯·诺依曼架构的电子计算机上运行的“智能”软件,该架构的主要缺点是处理单元和存储单元在物理上是分开的。一些软件模仿严谨的逻辑思维,而另一些软件模仿神经网络的结构和功能特征来学习如何从数据中执行任务。开发人工智能的第二种方法是在神经假体的硬件中实现人工神经网络,或设计类似大脑的计算机,将处理器和内存限制在同一空间中(所谓的内存计算;Sebastian 等人,2020 年)。如果人工神经网络由硅基电路或无机忆阻器制成,则它们是刚性的;如果基于有机半导体薄膜,则它们是柔性的(Christensen 等人,2022 年;Lee and Lee,2019 年;Wang 等人,2020 年;Zhu 等人,2020 年)。它们可以采用三种不同的架构进行设计:(A1)前馈(具有可训练的单向连接)、(A2)循环(具有可训练的反馈动作)或(A3)储层(由未训练的非线性动态系统与可训练的输入和输出层耦合而成)网络(Nakajima,2020 年;Tanaka 等人,2019 年;Cucchi 等人,2022 年;见图 1A)。在过去十年左右的时间里,一种开发人工智能的新颖而有前途的策略被提出:它包括通过湿件(即液体)中的分子、超分子和系统化学来模仿人类智能和所有其他生物所表现出的智能形式
具身人工智能 (EAI) 是当代人工智能的一个方向,其特点是发展对自然认知过程的综合研究,其假设是认知者的身体在认知中起着决定性的作用。在 EAI 中,“身体”的概念呈现出广泛的解释,从概念上讲,可以认为跨越了两个极端:一种是用于符号信息处理的神经元外物质支持的概念,适合将符号置于感觉运动关联中;一种是多重、集成、嵌入环境的系统的概念,其自组织的生物动力学与意义建构过程密不可分(纠缠在一起)(例如,Gallagher,2011;Ziemke,2016)。EAI 通常被宽泛地等同于机器人 AI,即一种以构建和实验探索自然认知过程的硬件模型为目标的 AI 形式。事实上,与计算机不同,机电机器人被赋予了身体,使其处于物理世界中 — 即,不(仅仅)处于抽象的“信息世界”中 — 并允许它们基于传感器(例如,能够检测障碍物、光、声音、电磁信号等的传感器)与其进行交互。和执行器。在大多数情况下,EAI 创建由计算机控制的机器人,这样机器人代理的身体在其与环境的感觉运动交互中,将中央处理单元的活动作为基础,中央处理单元充当信息处理和决策设备。然而,EAI 社区也致力于构建不受计算机引导的机器人,这些机器人能够仅通过身体来了解周围环境并完成认知任务(例如 Brooks,1991;Steels 和 Brooks,1995)。自 20 世纪 90 年代初出现以来,EAI 通过其多种表现形式,在基础研究和应用研究层面都取得了令人瞩目的进步(例如 Pfeifer 和 Bongard,2006)。尽管如此,从 20 世纪 90 年代末开始,人们就开始争论 EAI 方法是否适合生物体建模。这些批评越来越多地不局限于强调 EAI 典型的理论和实现的身体机械观。他们注意到 EAI 无法对身体组织进行建模,即通过新陈代谢支持生物体不断自我生产的功能关系动态网络(Ziemke,2016;Damiano 和 Stano 2018)。这些都是激进的批评,指出目前 EAI 对自然认知过程的综合研究仅仅建立在对生物体的模仿建模上:一种人工重建,只考虑身体结构的表面方面(例如,运动和解剖元素)而忽略了其最具体的维度——自主组织。在这篇短文中,我们打算介绍一种旨在克服这一差距的 EAI 研究方法的一般纲领路线。这样的程序本身并不是什么新鲜事。EAI 研究