摘要:运动想象 (MI) 脑机接口 (BCI) 因其在用户意图和任务执行之间直观匹配的特点而被广泛应用于各种应用。将干脑电图 (EEG) 电极应用于 MI BCI 应用可以解决许多限制并实现实用性。在本研究中,我们提出了一种多域卷积神经网络 (MD-CNN) 模型,该模型使用多域结构学习特定于主体和依赖于电极的 EEG 特征,以提高干电极 MI BCI 的分类准确率。所提出的 MD-CNN 模型由三个域表示(时间、空间和相位)的学习层组成。我们首先使用公共数据集评估了所提出的 MD-CNN 模型,以确认多类分类的分类准确率为 78.96%(机会水平准确率:30%)。之后,10 名健康受试者参与并在两个阶段(干电极和湿电极)执行了三类与下肢运动(步态、坐下和休息)相关的 MI 任务。因此,与仅使用单个域的传统分类器(FBCSP、EEGNet、ShallowConvNet 和 DeepConvNet)相比,所提出的 MD-CNN 模型使用三类分类器实现了最高的分类准确度(干电极:58.44%;湿电极:58.66%;偶然水平准确度:43.33%),并且两种电极类型之间的准确度差异最小(0.22%,d = 0.0292)。我们期望所提出的 MD-CNN 模型可用于开发具有干电极的稳健 MI BCI 系统。
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄
线是由贻贝足分泌的液态贻贝足蛋白 (Mfps) 产生的。这些 Mfps 由腺体通过注塑反应组装和制造。[3] 贻贝的足压在表面形成真空室,从而推动流体 Mfps 的输送。据信,局限于斑块中的 Mfps,例如 Mfp-2、Mfp-3、Mfp-4 和 Mfp-5,在暴露于盐水时会形成凝聚层。所有 Mfps 都含有翻译后氨基酸 DOPA,而 mfp-5 含有最大浓度的 DOPA 残基(30 mol%)并导致强粘附。 [4] 据报道,MFP 的凝聚以多种方式发生,例如由静电相互作用驱动的复杂凝聚,如 MFP-131 和 MFP-151 的聚离子中所揭示的那样,[5] 以及由静电和/或疏水力驱动的自凝聚,如 MFP-3S 中所揭示的那样。[6]
糖、强化漂白面粉(小麦粉、麦芽大麦粉、烟酸、还原铁、硝酸硫胺素、核黄素、叶酸)、棕榈油和大豆油、葡萄糖、少于 2% 的:硫酸铝、小苏打、食品改性淀粉、瓜尔胶、磷酸一钙、单甘油酯、天然和人工香料、聚山梨醇酯 60、丙二醇酯、红 40、盐、磷酸铝钠、大豆粉、大豆卵磷脂、黄原胶、黄 5。
通过将这些混合物的重复湿干循环(模仿地球早期的环境波动的条件)进行,这项研究确定了三个关键发现:化学系统可以在不达到平衡的情况下连续发展,避免通过选择性化学途径进行不受控制的复杂性,并表现出同步的人群在不同分子中的同步人群动态。
所述产品性能基于以下测试条件下运行 30 分钟后获取的数据:200 mg/L NaCl 溶液,施加压力为 60 psig (0.41 MPa);回收率为 15%;77 ℉ (25 ℃);pH 值 6.5–7.0;每个元件的渗透流量可能变化 +20 / -20%;最低脱盐率为 96.0%;所有元件均采用 CSM 完整性测试进行真空泄漏测试;元件可提供干式或湿式。湿式测试元件浸泡在防腐溶液(1.0% 食品级 SBS)中,并真空密封在塑料袋中。所有元件均单独包装。
在二十一世纪开始时,“潮湿媒体”的概念是指“干媒体和潮湿的生物系统的融合”。1 Me dium的湿度与其纯粹的生物学性质不同,但超出了介质的排他性,可以揭示存在的存在模式和数字与生物学之间的界限模糊。在“干”硅 - 晶状体com puter技术与“潮湿”生活系统相结合的背景下,艺术家使用“湿媒体”来探索无限的可能性以创造性地表达。艺术家也从单一媒体转变为跨学科的人,并开始探索人类与自然,技术和生物学之间的二分法,通过使用潮湿的媒体,触发有关艺术本体论的新思想。快速发展
在大多数湿法蚀刻、CMP、电镀和其他晶圆清洗操作中,晶圆上暴露于湿法化学处理步骤的区域是由光刻掩模操作定义的非常特殊的区域。因此,在评估湿法化学工艺的复杂性和挑战性时,必须考虑所制造集成电路特征的尺寸和几何复杂性。虽然半导体通常由直径一般为 200 毫米或 300 毫米、厚度约为 800 微米的晶体硅晶圆制成,但单个集成电路器件结构通常具有以纳米为单位的关键尺寸,因此属于分子尺度。器件特征(而非整个晶圆)的尺寸和材料复杂性对湿法化学处理提出了挑战。
铝电解电容器(AEC)可用于较高的电容和电压范围,与触觉电解电容器(TEC)相比。然而,在使用温度加速的常规AEC操作或存储过程中电解质的蒸发不允许在空间电子中使用这些零件。相反,对于需要大价值电容器和高工作电压的系统,设计人员必须使用TEC库,这些TEC库实质上增加了电子模块的大小和重量。使用密封的AEC的开发可能对空间系统有益,只要确保必要的可靠性。在AEC存储期间泄漏电流的增加是众所周知的,并且通常通过电解质中氧化铝溶解来解释。但是,尚未讨论这种效果的其他可能机制。尽管密封的TEC已在太空系统中使用了多年,但缺乏有关存储对其特性的影响的信息,这是对铝电容器的比较。这项工作探讨了AC特性(电容,耗散因子和等效串联电阻)和DC特性(泄漏和吸收电流)在长期存储期间在长期存储期间(100°C,125°C,125°C和15000000000000000000000000000000000子)的AC特性(电容,耗散因子和等效串联电阻)和DC特性(泄漏和吸收电流)。表明,两种类型的电容器中的泄漏电流正在降解,但是在偏置应用程序后,这种降解是可逆的。降解机制,并提出了基于两种电容器常见的过程的解释。分析了与密封电容器中电解质蒸发和蒸发相关的问题。
