SPASH 的课程多种多样,提供多种课程,包括通识教育、大学预科、大学先修课程、通过 Mid - State Technical College 和 North Central Technical College 的双重注册、Project Lead the Way、ESL、特殊教育课程以及职业和技术教育。SPASH 是一所使用 Chromebook 的 1:1 设备学校。SPASH 能够为学生提供全日制在线学习选项。一种选择是我们自己的在线学习中心 (OLC),另一种选择是通过我们加入乡村虚拟学院 (RVA) 联盟。SPASH 也是威斯康星河学院 (WRA) 的所在地,这是一个半天的户外活动项目,专注于基于环境的社区服务。
即使在现代社会,也很难找到符合特定标准的建筑平面图。大多数情况下,在客户指定他对新家的设想后,建筑师会浏览他的档案,以找到符合这些标准的类似平面图。下一步,他会修改它们以满足进一步的限制。但是,这种手动搜索需要很长时间,即使它可能具有很高的准确率,但召回率却很低。为了能够自动搜索,必须扫描档案并自动分析。自动平面图分析是提取嵌入在图像中的有关建筑物结构的信息的任务。它由几个子任务组成,例如,从文档中分割文本和图形、检测墙壁和门,最后识别不同的房间。自动平面图分析是模式识别和机器学习领域正在进行的研究课题。为了解决这个问题,人们进行了几次不同目标的尝试:[1-3] 尝试从 2D 平面图重建 3D 模型,而 [4] 尝试提取房间及其连接。参考文献 [5、6] 侧重于对手绘和草图平面图的理解。最近,我们介绍了一种自动平面图分析方法 [7]。对 [ 7 ] 中的结果进行分析得出的结论是,房间检索
本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
气候重建和预测正在融合,以确认温度的升高,降低的降低和降水的时空变异性。摩洛哥尚未幸免这种气候变化及其影响,因此影响了摩洛哥土地对各种作物的适用性。实际上,在摩洛哥,大坝的地表水储备在大约三十年的时间里减半了。被认为是气候变化最有弹性的物种之一,角豆树可能会成为高增值的经济资源。2020年,由于“ 2020 - 2030年绿色一代”的种植,全国性的角豆豆荚的生产达到了55,400吨,这一数字将上升,这使得种植了对新气候条件的高度适应的农作物。使用现代方法(Caroubiculture)扩展角色培养,需要基于形态和农艺标准选择高性能植物。目前的作品包括介绍Rahma品种,这是第一个在摩洛哥官方目录中注册的角色品种,作为雌雄同体花朵的一型鸡蛋,在Oujda科学学院选择。这种新品种的特殊性是在不需要男性传粉媒介的情况下生产令人满意的蝗虫豆,这表明应该单独或与其他高性能传粉媒介品种合并,以便在现代种植系统中使用。关键字:拉玛品种,高性能,oujda,雌雄同体花,气候变化。同样,监测该品种在十五年内的后代的结果表明,拉哈马品种的所有自由植物都保留了雌雄同体的特征,这将使我们能够为未来的森林人提供这些植物,以供未来的重新造成造成植物的项目,从而占据了生产植物的数量(幼虫和50%的男性),并且是50%的男性和50%的男性,并且从这些植物中选择克隆头。
引言拓扑和强烈的电子交流的复杂相互作用是现代冷凝物理物理学的最迷人和快速发展的领域之一。在发现超导性和扭曲的双层(TBG)(1,2)中的超导性和强相关性后,Moiré材料已上升到理论和实验性凝结物理物理学的最前沿,作为探索在拓扑频段中强烈相关的物理学的理想平台(3)。在石墨烯家族中,在多层Moiré异质结构中也取得了实质性进展,例如交替的扭曲多层(4-6)或单个扭曲多层,例如扭曲的单层双层石墨烯(7-9)。在副层中,基于半导体过渡金属二分法源的莫伊尔异质结构也揭示了从广义的wigner晶体到拓扑状态的互补物理学的味道(10)。Moiré平台的极具多功能性导致了各种各样的物理现象的实验性实现。在魔术角tbg中,几乎平坦的孤立的单粒子带的流形实现了以内部和带的几何形状为主的独特物理状态。也许对密切相关的拓扑结构的最引人入胜,最直接的观察是量子异常大厅(QAH)(11-14)(11 - 14)和分数Chern In-硫酸盐(FCI)(15-20),Integer和Integer和分数量子厅的晶格类似物驱动的,由固有的乐队几何形状驱动。然而,TBG中的这些拓扑状态通常被竞争的非拓扑状态脆弱和压倒性,可能是因为它们需要与六角形的硝酸硼(HBN)底物(11,23)或C 2 Z T对称性的自发断裂(24)。到目前为止,FCI状态仅在底物排列样品和有限磁场B〜5 t(15)中观察到。底物比对的明显需求提出了一个重大的实验挑战,该挑战严重限制了TBG平台中强相关拓扑的可重复性,尚不清楚是否可以在零领域使FCI状态稳定。最近,在扭曲的过渡金属二分法中发现了零场FCI的证据(25,
在我们日常工作的旋风中,在患者护理和我们面临的挑战中,必须认识到我们一起做的神圣工作很重要。我有无数的故事来体现我们护理团队所做的令人难以置信的工作。几周前,UM Health-West派遣了几个护理团队成员参加高中职业盛会。会议厅挤满了高中生,摊位和行业代表,以促进他们的角色和工作。直接在UM Health-West桌子前,一名高中生出现了医疗紧急情况。重症监护病房(ICU)注册护士(RN)和急诊科(ED)RN在那里跳进去并立即协调EMS响应,并取得积极成果。一个分娩中心(CBC)RN今天下午在咖啡馆里阻止了我,分享了她发现的一个令人兴奋的新(免费)应用程序,该应用程序为劳动患者提供了定位建议;她已经与她的前瞻性分享了。一个案件经理想与我分享一名护士超越和超越时间与一个孤独的病人共度时光。手术室或护理团队在手术过程中通过快速干预阻止了几乎跌倒。再次,这支球队和你们每个人都以令人难忘的方式照顾患者所做的工作给我留下了深刻的印象。我们有很多方法可以正式认识您的出色工作。我们本季度庆祝了两名雏菊奖得主。我们目前正在启动蜜蜂和雏菊护士领袖奖。良好的捕获奖强调了我们的患者安全工作。我们的护士示例提名投票现在正在发生,格里夫卡博士最近分享了我们的新生活我们的价值识别计划。
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
路面分为刚性路面和柔性路面两种。柔性路面由四个部分组成,即路基、底基层、基层和面层。柔性路面基层的道路建设中使用水结碎石和湿拌碎石。与传统的水结碎石相比,用 WMM 建造的柔性路面施工速度更快,更耐用。本研究的目的是比较 WMM 中使用的各种细材料的工程参数。用于比较的材料是土、石粉、沙子、粘土和粉煤灰。这样做是为了找出哪种细材料最适合 WMM 建设。对各种 WMM 混合物进行了重型压实试验、CBR 试验和渗透性试验。重型压实试验表明,与其他 WMM 组合相比,含石粉的 WMM 具有最高的最大干密度,而含粉煤灰的 WMM 具有最高的最佳含水量。 CBR试验表明,在研究中使用的所有细粒材料中,添加石粉的WMM具有最高的CBR值。渗透性试验表明,添加沙子的WMM具有最大的渗透系数值,而添加粘土的WMM具有最小的渗透系数值。
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄