然而,一小部分入射离子将经历一次或多次碰撞,从而以不同程度的原始能量逃离表面(反向散射)。无论是植入还是反向散射,它们都可能导致表面或附近的原子被喷射(溅射)。大多数散射粒子在与固体接触时被中和,但那些保留电荷的粒子会根据其能量进行分析,形成国际空间站使用的光谱。(在另一种称为
图1显示了第一代溅射铂NW的室温LF噪声谱,该NW采用基片阶梯光刻技术制造,其工艺顺序如图2所示。5,7,8,51通过基片阶梯光刻技术制造的NW是多晶的,其晶粒尺寸小于线直径。5,7 – 9,16,20,51 – 54图1中NW的噪声幅度在近五十个频率范围内以1/f 1.15的速率增加。f = 1 Hz时的Hooge参数为γH≅3×10−4,这是溅射Pt线和薄膜的典型值。51,71,96,97方程(2)中噪声幅度的1/N≈1/NA依赖性推测波动来源于体源。 20 世纪 70 年代末到 80 年代中期的几项重要实验证明了缺陷和杂质在金属低频噪声中的关键作用。52,55,66,83,95,98 – 103 一个具有单一特征散射或跃迁时间 τ 的缺陷会导致 RTN,其 Lorentzian 频谱在高于 1/ τ 的频率下下降为 1/ f 2,在低于 1/ τ 的频率下保持恒定。55,62,66,95,104 – 106 第 II.B 节中给出了 ZnO NW 的示例。如果噪声是由具有以下分布的多个缺陷引起的
空间电力推进 (EP) 技术的推力致密化对于实现未来雄心勃勃的太空任务和探索(例如载人火星任务)必不可少。EP 致密化主要受限于推进器材料承受极端等离子体条件的能力。本研究调查了最大化电流增强的相互关联的动力学、随后的溅射和电弧腐蚀挑战,以及一类有前途的新型先进材料——体积复合材料 (VCM) 对空间电力推进系统的影响。与标准材料相比,VCM 表现出增强的管理高水平等离子体能量和电流的能力,这主要归功于几何捕获和等离子体注入等原理的综合优势。研究了 VCM 中的能量管理和溅射剂传输机制,以深入了解最佳 VCM 几何形状,并探索利用先进增材制造方法的潜力。还通过耦合计算和实验分析确定了 VCM 电弧响应和有利的升华腐蚀特性。这一发现强调了 VCM 具有彻底改变与 EP 相关的面向等离子体应用的材料设计的潜力,为更耐用、更高效的推进系统铺平了道路。
课程概述:带电粒子动力学的审查;气排放基本面;离子源的分类;横向和纵向粒子束动力学;带有和没有空间充电的光束光学器件;离子源的提取系统;离子源的类型 - 签名电离量表(PIG),电子回旋谐振(ECR),真空弧,duoplasmatron,射频(RF)和snics离子源(通过cesium溅射的负离子来源);离子源的真空技术,离子源的光束诊断。
摘要 为了设计在极端条件下(包括长期太空任务)可靠运行的运动机械部件,需要对候选材料、表面处理和干膜润滑剂进行多元摩擦学评估。在本研究中,使用球对平试验收集了线性往复或单向滑动摩擦数据。球是硬化的 440C 不锈钢(未涂层或溅射 MoS 2),平面是 440C 不锈钢、Nitronic 60 不锈钢或 Ti6Al4V 钛合金,并经过各种表面处理和/或干膜润滑剂。表面处理包括阳极氧化、氮化和电火花加工。干膜润滑剂包括 Microseal 200-1、溅射 MoS 2 和纳米复合涂层 i-Kote。数据包含测试期间施加的法向载荷、测得的摩擦力、计算的摩擦系数、球位置、环境温度和相对湿度。测试在 300 至 2000 MPa 的不同峰值赫兹接触压力条件下进行。表面处理和干膜涂层后在 150 °C 下真空烘烤的平面以及在惰性气体(氮气)环境中测试的样品的数据也可用。这些数据既可用于从根本上了解不同材料系统的摩擦学特性,也可用于设计适合特定应用、条件和工作周期的组件。
为了评估自由号空间站 (SSF) 和未来任务的空间电源系统组件材料的耐久性,有必要在地面设施中模拟低地球轨道原子氧的加速暴露。美国国家航空航天局 (NASA) 刘易斯研究中心开发的设施提供了定向或散射氧气束、真空紫外线 (VUV) 辐射的加速暴露率,并提供原位光学特性分析。该设施利用电子回旋共振 (ECR) 等离子体源产生低能氧气束。可以在 250 至 2500 纳米的波长范围内原位测量样品的总半球光谱反射率。氘灯提供的 VUV 辐射强度水平在 115 至 200 纳米范围内,相当于三至五个太阳。减速电位分析表明,对于最适合高通量、低能量测试的操作条件,分布离子能量低于 30 电子伏特 (eV)。峰值离子能量低于设施中评估的聚合物保护涂层的溅射阈值能量 (-30 eV),因此允许长时间暴露而不会发生溅射侵蚀。中性物质的热能预计约为 0.04 eV 至 0.1 eV。基于聚酰亚胺 Kapton 质量损失的最大有效通量水平为 4.4x10 16 原子/cm z . s,因此可提供高度加速的测试能力。
• 结构表征:SEM、TEM、LEED、XRD、XRR、AFM 等。• 元素/化学表征:EELS、XPS、FT-IR、Raman、NMR 等。• 电/磁表征:PPMS /SQUID 等。• 沉积技术:CVD、PLD、ALD、等离子溅射。• 洁净室集成电路制造。• 三电极系统中的电化学表征(LSV、CV、EIS 等)。• 其他:TGA、DSC、DLS、UV-vis 等。• 7 年以上同步加速器 X 射线设备(LBNL、ANL、SLAC)工作经验。
我们的研究重点是改善钻石(例如碳(DLC)涂层)的摩擦力特性,该特性由新型PVD技术高功率脉冲磁铁溅射(HIPIMS)沉积,并在工具钢上呈阳性脉冲。这些涂层由于其非凡的特性而引起了行业的极大兴趣:出色的耐磨性,非常低的摩擦系数,出色的硬度或生物相容性。这些研究的目的是改善不同钢底物上DLC涂层的摩擦力特性,例如粘合剂或耐磨性。
AlN 被广泛用作压电 MEMS 中的压电薄膜。ScN 的添加大大改善了 AlN 有限的性能。Sc 含量达到 43at% 之前,AlScN 结晶为纤锌矿结构,并表现出压电耦合的持续改善。Sc 含量超过 43at% 时,AlScN 恢复为立方结构,不具有压电特性。AlScN 最有利的方法是使用 N 2 气氛中的 AlSc 合金靶材溅射。
