在这项研究中,使用商业Flip-Chip Bonder在Pyrex和Silicon底物之间进行了Au-Sn Eutectic超薄金属堆栈(〜1μM)键的详细表征。通过在320至380 o C之间改变键合温度在2至10 MPa之间,在三个不同的键尺寸的9、49和100 mm 2上进行了彻底的配方表征和开发。结果表明,在较高的温度下观察到更好的键质量,但不受键压力幅度的影响。还发现,接触的平坦度是确定键均匀性并因此质量的最重要参数之一,这对于超薄金属键尤其重要。此外,这项研究特别强调通过透明的Pyrex顶部底物观察键均匀性和金属溢出。随着温度的升高,平均溢流宽度增加,在380 O C时达到300μm,但没有受到施加的键压力的显着影响。同时,超薄的键层使我们有可能观察到键区内形成的几种不同类型的微观结构,这提供了有关样品冷却速率,晶粒尺寸和金属间合金中的重要信息。在特定情况下,由于在共晶反应期间,Au和SN的迁移速率不同,因此在光学显微镜下在光学显微镜下观察到Kirkendall空隙。我们认为,这是使用非破坏性光学成像技术对键合合金中的空隙的首次成功观察。在成功表征金属回流后,从债券位点出发,一种简单的控制这种溢出的方法已通过精确控制的
8.3 设计标准 ................................................................................................................ 8-3 8.3.1 场地标准 .......................................................................................................... 8-3 8.3.1.1 结构类型选择 ........................................................................................ 8-3 8.3.1.2 地形 ........................................................................................................ 8-4 8.3.1.3 碎片控制 ................................................................................................ 8-4 8.3.1.4 土壤和水数据 ............................................................................................. 8-4 8.3.1.5 暴露于潮水或腐蚀环境中的结构的保护涂层 ............................................. 8-5 8.3.1.6 请求数据和材料部门建议 ............................................................................. 8-5 8.3.1.7 地下调查 ............................................................................................. 8-5 8.3.1.8 管道拱度 ............................................................................................. 8-6 8.3.2 水力标准................................................................................................................ 8-7 8.3.2.1 设计暴雨 .............................................................................................. 8-7 8.3.2.2 允许上游水位 .............................................................................................. 8-7 8.3.2.3 审查上游水位 .............................................................................................. 8-7 8.3.2.4 尾水关系 – 水渠 ...................................................................................... 8-8 8.3.2.5 尾水关系 – 汇合处或大型水体 ............................................................. 8-8 8.3.2.6 最大出口速度 ............................................................................................. 8-8 8.3.2.7 最小速度 ............................................................................................. 8-12 8.3.2.8 储存路线 – 临时或永久 ............................................................................. 8-12 8.3.2.9 道路溢流 ............................................................................................. 8-12 8.3.3 几何标准............................................................................................................. 8-13 8.3.3.1 涵洞尺寸和形状 .............................................................................. 8-13 8.3.3.2 多管 .............................................................................................. 8-13 8.3.3.3 涵洞倾斜 .............................................................................................. 8-13 8.3.3.4 端部处理(入口或出口) ............................................................. 8-14 8.3.3.4.1 突出的入口或出口 ............................................................. 8-14 8.3.3.4.2 预制端部部分 ........................................................................ 8-15 8.3.3.4.3 带斜面的头墙 .............................................................. 8-15 8.3.3.4.4 改进的进水口 .............................................................. 8-15 8.3.3.4.5 翼墙 .............................................................................. 8-15 8.3.3.4.6 围裙 .............................................................................. 8-16 8.3.3.4.7 截水墙 .............................................................................. 8-16 8.3.3.4.8 拦污栅或杂物导流板 ............................................................. 8-16 8.3.4 安全注意事项 ............................................................................................. 8-16 8.3.5 允许的管道材料 ............................................................................................. 8-17 8.3.6 其他设计注意事项 ............................................................................................. 8-17 8.3.6.1 浮力保护 ............................................................................................. 8-17 8.3.6.2 泄洪口 ................................................................................................ 8-18 8.3.6.3 土地利用涵洞 .............................................................................................. 8-18 8.3.6.4 侵蚀和沉积物控制 ...................................................................................... 8-18
本区已收到一份根据 1899 年《河流和港口法》第 10 节(33 USC 403)和《清洁水法》第 404 节(33 USC 1344)提出的陆军部许可证申请。本通知旨在就颁发陆军部许可证以进行下述工作征求公众的意见和建议。申请人:Veronica Laureigh,莱西镇 代理人:Junetta Dix,ACT Engineers, Inc. 地点:新泽西州海洋县莱西镇的 Windy Cove、Hancy's Pond、Worden's Oyster Pond、Stouts Creek、Sunrise Beach 和 Bayside Beach 目的:申请人称该项目的目的是维护以下水道休闲航行的安全深度:Windy Cove、Hancy's Pond、Worden's Oyster Pond、Stouts Creek、Sunrise Beach 和 Bayside Beach。 项目描述:申请人莱西镇已请求陆军部 (DA) 授权在十年 (10) 内对六 (6) 个镇水体进行维护性疏浚。工作主要通过一艘 (1) 大型平顶驳船配备长距离或翻盖挖掘机的机械疏浚来完成。所有由此产生的疏浚材料(估计约为 74,004 立方码的沙子和淤泥)将从约 28.6 英亩的土地上清除。材料将被放置在最多六 (6) 艘漏斗驳船上,并使用翻盖式挖掘机直接卸载到卡车或其他集结区。将安装溢流板以防止卸载过程中意外回落。直接卡车装载是首选的卸载方式。当预计使用集结区时,将选择对公众影响最小的位置。在集结区内对材料进行任何脱水都不会导致疏浚材料排放到水体中。用于运输材料的三轴卡车将
(CONOPS)计划第 1 部分:AQPI 概述和状态 1.1 先进定量降水信息系统 (AQPI) 概述 AQPI 是一种降水监测、警报和水文信息系统,供水资源机构和应急管理人员以及旧金山湾区的其他社区利益相关者使用,用于管理水源,并通过改进的降水估计和增强的气象观测,预警山洪、泥石流或合流污水溢流事件等水文灾害。AQPI 系统有几个组件。安装五个气象雷达将填补雷达覆盖空白,并改善降水估计和短期临近预报(<1 小时)。为了支持预测需求,融合了高分辨率快速刷新 (HRRR) 和全球预报系统 (GFS) 预报模型的数据馈送涵盖了 AQPI 基于网页的显示中的 0-10 天,并直接在数据流中发送给 AQPI 成员机构。 AQPI 用户门户上提供可视化效果,并开发了定制数据源,供当地合作机构委员会 (LPAC) 成员在其运营活动中使用。该系统还包括安装新的降水、径流和土壤湿度表面测量数据,并将现有的测量数据汇总到决策支持系统中。沿海风暴建模系统 (CoSMoS) 提供沿海海平面预报,为沿海洪水灾害提供预警和决策支持。AQPI 系统还将结合国家水模型 (NWM) 提供径流预报。1.2 AQPI CONOPS 计划概述 AQPI CONOPS 计划的总体目标是提供全面的指南,以确保在完成加州水资源部 (CA DWR) 系统开发奖后,AQPI 系统在交付后的前五年内继续运行和开发。CONOPS 计划将在斯克里普斯海洋研究所西部天气和水极端事件中心 (CW3E) 的领导下,在大约两年的时间内制定完成。 CONOPS 计划目标、内容和制定过程的详细信息在第 2、3 和 4 节中介绍。1.3 AQPI 系统组件的当前状态(截至 2022 年 1 月 31 日)雷达
尽管纳格浦尔市政公司 (NMC) 和居民共同努力,安巴扎里湖的凤眼莲杂草仍然肆意生长,迫使市政机构寻求该问题的长期解决方案。印度科学与工业研究理事会 - 印度国家环境工程研究所 (CSIR- NEERI) 已向 NMC 提供帮助,以消除这一祸害。该研究所将对此事进行研究,并准备一份关于安巴扎里湖凤眼莲杂草长期管理的报告。CSIR-NEERI 高级科学家 Paras Pujari 博士告诉《The Hitavada》,“水体中杂草的蔓延与许多因素有关,我们正在从各个方面寻找该问题的长期解决方案。”几周前,NMC 在居民和非政府组织的帮助下清除了湖中的杂草。大批民众前来清理湖面,并在消防部门潜水员和 NMC 工作人员的帮助下清除了水体中的凤眼莲杂草。尽管做出了这些努力,水体中杂草仍然蔓延,市政机构的机械设备频繁地清除杂草。“我们一直在努力清除湖中的杂草。我们部署了挖掘机、‘Jal Dost’、船只和人力来清理水体,”NMC 监理工程师 Shweta Banerjee 博士说道。污水进入水体是湖中凤眼莲泛滥的唯一原因。有一条从 Wadi 市政委员会 (WMC) 一侧流入的沟渠,将污水直接排入 Ambazari 湖。为了阻止污水进入 Ambazari 湖,邦政府拨款 1 亿卢比用于在沟渠附近建造一座污水处理厂 (STP)。“STP 的建设正在进行中,还需要六个月才能完成。在那之前,我们正在致力于短期杂草管理。 “我们要求 NEERI 开展一项研究,为水体制定杂草管理计划,”Banerjee 博士说。去年 9 月 23 日,该市发生洪水,原因是凤眼莲杂草堵塞了 Ambazari 湖的溢流侧。现在又到了季风季节,凤眼莲杂草成了附近居民的噩梦。
有效储存150组成型数据(如时间、次数、压力、速度、行程、计量、模厚、模具名称、选用条件、原料温度等)。 在线操作详细提示。 采用分级加密锁定软件数据。 输入数据时有防错提示,以防修改不当。 数据修改可通过iChen系统在线保存在中央服务器。 最先进的SMT电板组装技术,可靠性高。 64位高速CPU。 10组PID温控,在30℃~500℃之间调节,精度高。 冷启动预防、、、、、自动预热功能、、、、、喷嘴堵塞报警、、、、、树脂溢流检测。。。。。。 运行中高低温偏差设定及温控器断线检测。注射10段速度、、、、、10段压力设定。。。。。 塑化10段速度、、、、、10段压力及10段背压设定。。。。。 4组吹气,6组抽芯。 锁模、注射、顶出均采用高精度光学编码器(标配)或电位器(选配)。 储存报警历史记录,方便工艺调试及维护。 生产数量及批次控制。 配合iChen订单排单系统。 自动切换润滑设定,缺油报警。 操作动作图形显示,方便注塑机运行的监督。 循环操作时间监视,方便调整以缩短循环时间。 注射速度、压力标准图与当前图对比。 注射终点统计。 在线监视程序运行情况及各种输入、输出、定时器、计数器的状态,方便调试和维护。支持104个输出、104个输入、200个定时器及20个计数器状态监控。模具数据可自由选取、复制及删除。可利用电脑内预设模具数据,保存设定时间。亦可外接SD卡输入数据。智能故障检测及辅助操作指示。支持热流道温度控制(60腔,选配)。全面支持iChen网络管理系统。
发布日期:2024 年 4 月 4 日 到期日期:2024 年 5 月 4 日 参考:MVP-2023-01559-TMS 章节:404 - 清洁水法案 1.申请许可将填充材料排放到毗邻 Tibbitts Brook 支流的 1.91 英亩湿地中。2.具体信息 代理人 Widseth c/o Joey Goeden 610 Fillmore Street Alexandria, Minnesota 56308 项目地点:项目地点位于明尼苏达州谢尔本县西 26 区北 34 镇第 21 区。近似的 UTM 坐标为 N 454513.724222,E 5030859.456439。纬度:45.429777,经度 -93.581488。项目描述:申请人提议改进其现有的废水处理设施。改进后的设施旨在容纳不断增长的人口并满足州和联邦的污水质量要求。拟议的工作包括挖掘以建造九 (9) 个污泥干燥池,建造一座新建筑,该建筑将容纳曝气池、膜生物反应器和紫外线室、泵和鼓风机区域以及电气和化学处理室,现有建筑物的 10 英尺延伸部分,容纳污泥储存和溢流池,以及建造新的通道和人行道。填埋量、类型和面积:拟议项目将导致填埋材料永久排放到 1.91 英亩的湿地中,以改善废水处理设施。此外,填埋材料将临时排放到 0.15 英亩的湿地中以方便施工,并将在项目完成后恢复。受影响区域的植被:现场湿地包括类型 2 - 淡湿草地和类型 3 - 浅沼泽湿地。湿地中的优势物种包括芦苇草 ( Phalaris arundinacea )、沙洲柳 ( Salix interior )、黄甜三叶草 ( Melilotus officinalis ) 和紫柳 ( Lythrum salicaria )。现场湿地位于以前用作废水处理池的区域。该处理池于 1999 年退役,随后该地区形成了湿地。土壤钻孔表明,处理池的粘土衬垫仍然存在,并限制了水渗入地下水。经确定,湿地区域历史上用作废水处理池、粘土衬垫阻止水渗入地下水以及入侵物种的优势已经降低了湿地的栖息地和水文功能。填充材料来源:填充材料将由选定的承包商采购。
水温 ___ / ___ ° F 稳定剂 ___ / ___ mg/L 是否收集了用于细菌分析的样本? 是 否 关键: = 合规 X = 不合规 – = 不适用 规则编号或法案章节在括号中。泳池围栏和甲板浴室 1. 门或大门符合 [28(2) 和 91(1)] 24. 淋浴间、卫生间或更衣室清洁 [91(4)] 2. 泳池围栏符合 [28] 25. 浴室材料和固定装置符合 [74、75 和 76] 3. 甲板清洁、排水畅通且状况良好 [29、29a 和 91(4)] 26. 提供热水和肥皂 [25(2) 和 91(7)] 4. 泳池边淋浴符合 [78] 机械设备 5. 饮水机符合 [31] 27. 机械设备安装到位 [71] 6. 软管龙头符合 [79] 28. 管道和箭头符合 [37] 7. 提供深度标记和“禁止跳水”标志 [32] 29. 水泵充足且运行正常[36、45 和 96(1)] 8. 跳水设施和出发平台符合要求 [33 和 35] 30. 流量控制阀符合要求 [38(1)] 9. 梯子/楼梯符合要求,台阶前缘有标记 [34] 31. 流量计功能正常且流量合适 [38(2) 和 96(1)] 泳池水质和泳池结构 32. 过滤器和仪表功能正常 [51、54 和 96(1)] 10. 泳池水质清澈度和符合要求 [94] 33. 化学药剂加料器功能正常 [57、96(1) 和 96(4)] 11. 泳池侧面和底部光滑清洁 [22(3) 和 91(4)] 34. 其他空气和水泵系统符合要求 [42 和 46] 12. 泳池结构状况良好 [22 和 91(4)] 35. 热水器和温度计符合规定 [61、82 和 94(7)] 13. 标记泳池边缘、座椅和坡度变化 [23(5)、(7)、(8)] 36. 配备吸尘器 [63] 14. 水位适合撇渣 [96(3)] 37. 化学品储存得当 [91(5)] 15. 溢流系统/撇渣器正常运转且清洁 [43、43a、44] 38. 供水充足且受到保护 [25 和 26] 16. 泳池进水口符合规定 [41] 39. 废水设施充足 [27] 17. 主要出水口符合规定 [42] 40. 新设备的建造批准 [Sec. 12525] 安全一般操作 18. 救生员在岗或已张贴标志 [94a 和 98] 41. 测试工具合适并使用 [59 和 94] 19. 入浴者负荷(#_________)在限制范围内并已张贴标志 [93] 42. 随时有合格人员 [97] 20. 危险物品、食物或饮料得到控制 [92(8)] 43. 已支付操作许可证费 [第 12527 和 5(2) 条] 在上方添加许可证号 21. 生命线符合要求 [32(10) 和 91(3)] 44. 使用了操作报告表 [99] 22. 安全设备符合要求并随时可用 [65 和 91(2)] 45. 应急计划/水样采集 [94a 和 95] 23. 电话可用、明显且已张贴标志 [65(8) 和 (9)] 46. 未经建筑许可证不得进行任何改造 [第 12525 条] 备注
2020 年 3 月 2 日 尊敬的 Kathleen A. Theoharides,秘书 能源和环境事务执行办公室 收件人:MEPA 办公室 100 Cambridge Street, Suite 900, Boston, Massachusetts 02114 事由:弗雷明翰洛根快线扩建项目,马萨诸塞州弗雷明翰 尊敬的 Theoharides 秘书和 Kim 主任: 我谨代表马萨诸塞州港务局 (Massport) 提交一份关于扩建现有弗雷明翰洛根快线设施的扩展环境通知表 (EENF) 供您审阅。正如我们在最近的洛根机场环境状况和规划报告 (ESPR, EEA #3247) 中概述的那样,Massport 的洛根快线网络是我们高乘载车辆 (HOV) 战略的核心,用于乘客和员工进出洛根机场的地面通道。洛根快线目前是联邦第七大交通系统,对减少整个市场区域的出行、拥堵和排放至关重要。弗雷明翰洛根快线站点在服务 MetroWest 地区方面非常有效,估计每年可减少弗雷明翰地区与洛根机场之间交通高度拥堵的马萨诸塞州收费公路 (I-90) 沿线 450,000 多次出行。在未来十年内,我们预计每年可减少的出行次数将超过 100 万次。这只有在弗雷明翰增加停车位,并在新停车位开放后将特快巴士的每小时班次从 2 班增加到 3 班的情况下才能实现。该位置的原始洛根快线设施建于 1995 年;该设施于 2015 年被目前的综合航站楼和车库结构所取代,共计 1,082 个停车位。新车库设施一经开放,在交通高峰期就几乎满负荷运行,该位置的停车需求继续呈现强劲增长,无论是航空乘客还是洛根机场员工。Massport 目前的计划是将车库在现有占地面积内扩建至其最大结构容量七 (7) 层。此次扩建是在 2014 年 MEPA 审查过程 (EEA #15144) 中设想的,其中描述了地基是为未来的水平而设计的。在现有的占地面积和结构容量内,总共可以添加 998 个额外的停车位。即使有了这些新的停车位,Massport 预计仍将继续运营 Flutie Pass 沿线的相邻卫星溢流停车场,该停车场可容纳 565 个停车位。通过建造这个设施并增加 Massport 系统范围内的 Logan Express HOV 容量,我们估计 Logan Express 的使用率将能够从 2019 年的每年近 200 万用户增加一倍,达到每年超过 400 万用户。这意味着区域车辆行驶里程 (VMT) 和相关车辆排放量将显著减少。温室气体 (GHG) 分析表明,扩建车库以提供额外的 998 个停车位和扩展服务,该项目将减少温室气体排放
CAE-1 Aghayere - 黑人文化中心 Jayla Garvin、Lulu Obinwa、Abby Debebe、Daniel Ramut、Ali Mohammad Dr. Abieyuwa Aghayere、Jeffery Fama 教授 在疫情开始时,校长 John Fry 曾多次讨论过德雷塞尔大学的黑人组织和学生需要学习、举办活动和建立社区的空间。目前,提供的空间只是 Rush 大楼的一层。我们决定在校园附近或校园内为德雷塞尔黑人文化中心建造一座多层建筑。黑人文化中心的主要目的是让德雷塞尔大学的黑人学生、教师和工作人员在校园内有一个可以称之为家的地方,他们可以在这里学习、学习、成长和建立黑人社区。中心的受众是校园内的黑人学生、组织、教师和工作人员,但对所有人都开放并欢迎他们。最重要的方面是确保我们尽可能多地整合黑人文化和创造力的资产,同时遵守 IBC 2018 和德雷塞尔大学建筑系统标准。 CAE-3 SEPTA-Yards 建筑设计 Joseph DiMarco、Brandon Hensyl、Christopher Kierce、Madeleine McCoskey、James Murray Dr. Abieyuwa Aghayere SEPTA Yards 建筑设计项目位于德雷塞尔和 SEPTA 地产内一块不规则形状的地块上,就在 Canaris Hall 以北(32 街以东)。该项目的目标是建造一座多功能建筑(商业和住宅),以优化德雷塞尔大学房地产和设施以及 SEPTA 员工的既定空间。拟建的建筑将悬挑在现有的 SEPTA 铁路站场上,以最大限度地利用可用空间。悬挑需要考虑结构和岩土工程,以确保最小的变形,为上抬提供支撑,并确保安全地满足建筑物的轴向需求。该项目将包括结构、机械和水资源工程师,以及整个项目期间的施工管理程序。将为建筑物的结构方面提供结构设计、负载分析和文档。岩土部分将研究深基础设计,以抵抗悬臂引起的上举力并满足建筑物的轴向荷载需求。机械设计将包括分析和选择建筑围护结构的节能隔热材料,以及 HVAC 区域的热量增益/损失计算。雨水管理方面将侧重于城市水再利用,以及绿地和可持续性的设计考虑。最后,将根据典型的施工管理技术确定项目设计和施工阶段的建筑成本和时间表。CAE-4 费城可再生能源解决方案 Olivia Szabo、Galen Steven-King、Brenda Dluhy、Lux Ezell、Cole Rooney 博士。Shannon Capps 位于南费城的费城能源解决方案 (PES) 前工厂即将重新开发。一百多年来,该工厂一直是东海岸最大的炼油厂所在地。炼油厂向土壤、地下水和空气中排放了大量有害污染物。该项目计划将该工厂改造成一个可持续、环保、以社区为中心的场所。这片占地 1,300 英亩的工厂被划分为商业物流中心、综合道路网络、休闲公园、森林公园和人工湿地。该项目还提出了工厂环境修复、气候适应和可再生能源计划。该小组设计了初步的修复系统、位置和成本,以确保该工厂在未来使用时安全。该团队还进行了雨水建模,以确保工厂的径流得到管理,而不会导致合流污水溢流或河水泛滥。可再生能源系统经过建模和设计,可为整个工厂提供清洁能源。还进行了额外的规划,在场地北部建造了一个公园,以鼓励社区参与,并创造通往森林地区的通道。为了取代这个场地上曾经存在的经济引擎,一个布局