1. 在第一个瓶盖上钻两个大小相同的孔。这两个孔的大小要刚好能让吸管滑过。 2. 在第二个瓶盖上钻一个与吸管大小相等的孔和一个小一点的孔。 3. 如果任何一个孔太大,用橡皮泥把它们弄成正确的大小。 4. 在水罐里,混合水和食用色素来制作“红色血液”。这可以“目测”完成,不需要精确测量。 5. 拉伸并弯曲两根吸管,使其形成 90 度角。将一根吸管滑入另一根吸管(捏住一根吸管使其变小,以便滑入),然后用胶带封住接头。对第二组吸管重复上述操作。 6. 将三个瓶子放在桌子上。将前两个瓶子装满“血液”,直到大约 80% 满。第三个瓶子留空。 7. 将有一个吸管孔和一个小孔的瓶盖放在第一个瓶子上。将有两个吸管孔的瓶盖放在第二个瓶子上。将第三个空瓶子不要盖上盖子。8. 小心地将吸管穿过瓶盖。在中间瓶子的吸管底座周围放上粘土或橡皮泥,与瓶盖密封。现在您就可以让心脏模型开始工作了!让心脏模型工作:1. 捏住心房和心室瓶子之间的吸管。挤压中间瓶子,观察“血液”喷入体内。2. 保持“挤压”中间瓶子,移动手指,捏住心室和身体之间的吸管。现在松开中间瓶子,观察血液从心房流入心室。3. 重复,将血液从心房泵入心室,然后再泵入体内!4. 一旦心房中的血液过低,您可以从体内抽取血液并将其加回心房。然后重新开始。
[研究背景]基因组编辑是一种使用特殊的DNA结合蛋白来自由重写含有遗传信息的DNA的技术。预计将来将用于基因治疗。但是,现有的基因组编辑蛋白CAS9有问题,例如编辑所需的时间和非目标DNA序列的编辑不正确。在考虑对基因治疗的应用时,误用DNA是致命的。因此,需要快速准确的基因组编辑蛋白的发展。 [研究结果]研究小组先前使用单个分子荧光显微镜进行了研究,重点是“滑动”,该显微镜以滑动方式移动DNA结合蛋白。而且,现有的基因组编辑蛋白Cas9是一种DNA结合蛋白,但已知它不会滑动。如果CAS9可以滑过DNA,它将能够快速定位目标DNA并允许快速编辑目标DNA。此外,当它与非目标DNA结合时,Cas9会误导其DNA序列,但通过快速将其移动到DNA上,它可以防止误用。 考虑到以上,在这项研究中,我们设计了两种修改CAS9的方法,以便它可以在DNA上移动,并使用DNA比对固定技术“ DNA Garden”和单个分子荧光显微镜进行了验证。首先,我们认为CAS9的氨基酸与DNA密切结合,抑制滑动,因此我们用另一种氨基酸代替了这些氨基酸。结果表明,在没有引导RNA的情况下,在没有引导RNA的情况下,修饰的CAS9的滑动最多可促进15次。 接下来,当我们从DNA结合蛋白NHP6A中移植了一个增强的位点时,我们发现,在没有引导RNA的情况下,在没有引导RNA的情况下,最多可促进修饰的Cas9的滑动,最多可促进5次(图A)。该植入部位与DNA结合并松开Cas9和DNA之间的结合,这被认为可以促进Cas9幻灯片(图B)。从上面,我们成功修改了CAS9,以便可以在DNA上滑动。预计修改后的CAS9将在基因组编辑中使用,例如将来的基因疗法。
2024年1月4日,大约当地时间17:47,空军B-1B的MISHAP飞机(MA),尾巴号为85-0085,分配给Ellsworth空军基地的第28炸弹翼,在跑道短的100英尺处降落,降落在跑道13。MA的后辐射击中了地面,在MA滑过跑道之前,主要起落架撞击了接近照明系统。不幸的船员(MC)从MA弹出,所有四名成员都安全离开了MA。两个MC因射血序列而受到伤害。硕士继续在13号跑道上滑行约5,000英尺,向左滑行,最终在飞机场两辆滑行道之间的内场休息。MA在不幸的序列期间起火,是全部损失。不幸的总估计损失为$ 456,248,485.00。MC通过密集的雾进行了低的可见性方法,MISHAP飞行员(MP)应用了几次发动机节气门减少,以减少MA的空速并与仪器着陆系统Glideslope保持一致。MP没有进行额外的油门调整以实现目标空速,并且随着MA在进近的最后一分钟,MA经历了风剪,MA掉落在Glideslope下方,并变得不足。MC在MA无法恢复之前没有识别MA的垂直速度下降。事故调查委员会主席发现,事故的证据表明,事故的原因是MC缺乏有效的综合交叉检查。MC未能通过不认识MA的空速下降,加速下降速率和不足的飞行路径来进行有效的交叉检查。此外,事故调查委员会通过大量证据发现了五个基本促成因素:(1)MC未能执行标准机组人员资源管理; (2)不利的天气条件,包括未发现的风切变,导致最终进近的MA空速迅速转移,并且有限的天花板可见性条件影响着陆跑道的变化; (3)无效的飞行行动监督,由一个人反映出飞行和运营主管的主管,任务饱和,对机场环境的情境意识较差,并且没有意识到对飞行员的积极通知,使执行方法未经授权; (4)缺乏对机场状况的认识,尤其是在机组人员中及其对天气传感器的领导,这阻止了必要的人员对跑道13的准确可见性阅读; (5)一种不健康的组织文化,允许飞行技巧降级,专注于管理指令,缺乏纪律以及在机场条件和危害方面的沟通不良。
Annelid发育中的祖细胞:卵母细胞端粒细胞是Annelid胚胎中的大细胞,它们不对称地分裂以形成许多较小的爆炸细胞,然后将其增殖并分化为节段组织。这些细胞在Annelids的发展中起着至关重要的作用,在水ches和其他寡头中详细研究了细胞细胞。在第二轮后,五对卵母细胞是从d象限的大粒子中指定的。每对产生外胚层或中胚层组织,四对形成外胚层组织,一对形成中胚层组织。端粒具有两个不同的细胞质结构域:端质和叶片质。端质包含核,核糖体,线粒体和其他细胞器,而卵黄质主要由蛋黄血小板组成。在细胞分裂后,只有端质被传递到子干细胞上。O和P型蛋白细胞是从形成等效组的两个相同的前体中指定的。来自周围细胞的信号决定了雌胆母细胞的命运及其后代的命运,Q Bandlet与相邻的O/P Bandlet之间的相互作用引起了P命运。在某些物种中,例如helobdella triserialis,覆盖细胞的临时上皮在诱导命运中起作用。实验结果表明,在某些蠕虫中,O和p没有对等效组,而P谱系在其出生时从O/P Protelblast阶段开始。在水ech中,卵母细胞是引起爆炸细胞的细胞。在其他物种(例如helobdella ustensis)中,其他信号促进了P谱系分化,包括来自Q谱系细胞的骨形态蛋白分子信号传导。有四种类型的卵母细胞:N和Q,每个片段贡献了两个爆炸细胞; O,P和M,每个段覆盖一个分段边界的一个爆炸细胞。随着开发的进展,每个包含64个爆炸细胞的N和Q带子都滑过O,P和M带子,每个Bandlet都包含32个细胞。此动作允许在所有带子进入完整寄存器之前指定每个带子中的分段边界。卵母细胞负责产生水ech体的不同部分。N和Q型母细胞每段贡献两个爆炸细胞,一个用于前半部分,一个在后半部分。O,P和M型蛋白细胞贡献一个跨越节段边界的爆炸单元。水ches中的分割过程很复杂,涉及卵母细胞的运动和不同段的形成。对卵母细胞的研究为这组生物体的发展和进化机理提供了宝贵的见解。