微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
从设计角度来看,获得可变滤波器的可能性取决于多层涂层的光谱特性与某些层(如果不是全部)厚度的依赖关系。在由两个金属镜形成的法布里-珀罗滤波器的特定情况下,腔层厚度的简单变化会使其中心波长发生偏移。这种简单的结构具有自然提供宽抑制带的优势,但不足以提供尖锐的过渡带通,并导致高吸收损耗。为了改善最后一点,一种解决方案是使用所谓的感应透射滤波器方法,其中金属层放置在介电法布里-珀罗滤波器腔内电场分布最小处 [2-4]。然而,生产具有任意指定抑制、宽度和锐度特性的滤波器的唯一方法是使用标准的全介电方法,该方法由多腔法布里-珀罗结构与附加介电短波长和长波长通断滤波器相关联形成。在这种情况下,所有层的厚度必须通过一个公共因子进行调整,从而产生比例的波长偏移,以产生可变滤波器[5,6]。
饮酒障碍(AUD)是一个重大的全球健康问题。尽管男性的发生率较高,但女性的AUD患病率和与酒精相关的负面结果正在上升。人类中的孤独感与饮酒的增加有关,传统的啮齿动物饮酒模型涉及单一住房,对研究社会富集提出了挑战。我们开发了Liq parti(带有多动物RFID跟踪集成的LICK实例量化器),这是一种开放式工具,可在集体式的环境中检查家居笼子连续连续的访问两瓶选择饮酒行为,研究性别和社会隔离对C57BL/6J小鼠中乙醇消耗的影响以及性别隔离对乙醇消耗的影响。liq parti,基于我们先前开发的单层Liq HD系统,可以使用基于电容的传感器和RFID技术准确跟踪饮酒行为。组成群的雌性小鼠比男性表现出更高的乙醇偏好,而男性则显示出与笼子变化相关的乙醇偏好的独特波动模式,这表明潜在的应力或新颖的反应。慢性乙醇摄入量明显改变了男性和雌性小鼠之间的回合微观结构,突出了性别和社会环境对饮酒行为的影响。liq HD系统的社会隔离在性别中放大了液体摄入量和乙醇偏好,并伴随着性别微观结构的性别和流体依赖性变化。然而,这些影响在重新定位后在很大程度上扭转了,表明这些行为对社会环境的可塑性。利用一种新型的集体房屋笼式莱克计设备,我们的发现说明了C57BL/6J小鼠自愿性饮酒行为中性别和住房条件的关键相互作用,从而促进了对AUD病因的潜在贡献的细微见解。
研究文章:新研究|神经系统的疾病一种新颖的鼠标家庭笼式舔系统揭示了对酒精饮酒https://doi.org/10.1523/eneuro.0234-24.2024收到的基于性别和住房的影响,收到:2024年6月3日修复:2024年8月4日接受:2024年9月4日2024年9月4日Copyright copyright©20224 Petersen al al an an an and an。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
DOI: https://dx.doi.org/10.30919/es1158 Simulation Calculation of Selective Reflective Films based on Metamaterials and Prediction of Color in Light Filter with Machine Learning Pawinee Xiangtian Gao, 1, 2 Ming Yang, 1, 2,* Aricson Pereira, 3 Sijie Guo 4 and Hang Zhang 1, 2,* Abstract In this study, we已经开发了一种利用超材料的新型三层圆柱周期性结构,将周期性的圆柱体布置与金属 - 绝缘子 - 金属(MIM)三层构型相结合。有限差时间域方法用于计算结构的反射曲线,然后计算D65光源下结构的颜色坐标。我们获得了结构和结构大小参数变化所呈现的颜色之间的关系。然后,随机森林算法用于机器学习,并获得了更准确的学习模型。确定系数r 2高于0.98。此结果可确保随机森林算法可以用于上层建筑的计算中。本文介绍了具有可调色属性和机器学习框架的新型轻滤波器设计,以基于结构参数进行准确的颜色预测。
“ iLiations:1范德比尔特脑研究所,范德比尔特大学医学院,纳什维尔,田纳西州纳什维尔,37232 2 2范德比尔特成瘾研究中心,范德比尔特大学医学院,纳什维尔,田纳西州纳什维尔,37232,37232,37232 3分子生理学和生物物理学系马萨诸塞州的木马,马萨诸塞州,伍斯特,01655作者:NP,DGW和MAD设计的研究;*通讯作者信息:Danny.winder@umassmed.edu Umass Chan医学院364 Plantation Street Lazare医疗研究大楼728 MA 01605-2324(508)856-6148 MARIE A. DOYLE A. DOYLE A.DOYLE MARIE.DOYLE.DOYLE@umass chan chan Medical School School 364 Planteration 364 Planteration Lazare Lazare Lazare 728 01605-2324 (508) 856-6148 Number of figures: 7 Number of supplemental figures: 5 Number of multimedia: 1 video, 1 zip folder Number of words: Abstract – 246 Significance Statement - 112 Introduction – 749 Discussion – 2301 Conflict of interest: Authors report no conflict of interest.资金来源:NP得到F30(AA029599),T32(GM007347)和R01多样性补充(NS102306-04S1)的支持。DNA由NIAAA(AA030901)的F31支持。cme由NIMH(MH065215)的T32支持。MAD得到了F32(AA029592)和T32(NS007491和MH065215)的支持。DGW和研究得到R37(AA019455)和P60(AA031124)的支持。
摘要:我们研究了由传输矩阵形式主义中微波区域内的二循环(A)和等离子体(P)材料组成的多通道过滤器的透射率。在应用磁场的影响下研究了提出的过滤器的两种构造:(1)包含空气包围的(a / p)N单位细胞的周期性结构,以及(2)引入第二个电端材料(d),该材料(D)作为A(d)的缺陷层(ap)n / 2 /2 / d / d / d / d / d / 2 Struc-2 Struc-2 Struc-2 Struc-2 Struc-2 Struc。我们的发现表明,在周期性的情况下,透射率的谐振状态随数n的数量增加;然而,观察到的蓝色和红移取决于施加的磁场的强度和方向。我们提出了透射系数的轮廓图,这些图显示了入射角对光子带隙的偏移的影响。此外,我们发现缺陷层的引入会产生额外的共振状态,并将中心共振峰合并为共振的小键。此外,我们表明,可以通过增加单位单元格数N并增加插入的缺陷层的宽度来调节共振峰及其位置的数量。我们提出的结构可以使用在微波区域中运行的磁化等离子体材料来设计新型的光子过滤器。
鉴于这些挑战,量子点彩色滤光片 (QDCF) 已被提出作为实现全彩微型 LED 显示器的替代方法 [2, 13, 17]。在该技术中,含量子点 (QD) 的材料(例如量子点光刻胶 (QDPR) 或量子点墨水)通过光刻或喷墨打印图案化为像素化阵列。然后,将该 QDCF 顶部玻璃以像素到像素的精度安装在全蓝色微型 LED 背板上。红色和绿色子像素中的红色 QD (R-QD) 和绿色 QD (G-QD) 会分别将蓝色微型 LED 发出的蓝光转换为红光和绿光,实现全彩显示。这样,只需要单色蓝色微型 LED 背板,这大大简化了传质过程,也减轻了温度引起的色移。在本文中,我们介绍了对 QDCF 微型 LED 技术的研究。我们使用光刻技术在 QDCF 顶部玻璃上图案化红色和绿色 QDPR。然后,将该顶部玻璃与蓝色微型 LED 背板精确粘合。测量所得器件的光学性能。此外,我们讨论了蓝光发射角度对 QDPR 厚度的适当选择以及优化精密粘合工艺以消除串扰的影响。结果,我们实现了具有良好显示性能的 1.11 英寸 228 ppi 全彩 QDCF 微型 LED 原型。讨论可能促进 QDCF 技术在微型 LED 显示器中的应用。
在法律规定的某些条件下,图书馆和档案馆有权提供复印件或其他复制品。这些规定条件之一是,复印件或复制品不得“用于除私人学习、学术或研究以外的任何目的”。如果用户请求复印件或复制品,或随后将其用于超出“合理使用”范围的目的,则该用户可能要承担侵犯版权的责任,
整个垦务局的地球科学家和水文学家经常使用 LiDAR 数据进行地貌研究和水力建模。实际使用数据时,发现了一些数据质量问题,包括对河岸、堤坝和水面等景观特征的不准确表示。此外,数据文件大小可能超出用于生成和分析表面模型的软件的处理能力。这些数据质量问题不一定与数据处理的质量保证和质量控制有关,而是与标准过滤程序的广泛认可的局限性有关(Axelsson 1999 和 2000、Bowen 和 Waltermire 2002、Bretar 和 Chehata 2007、Brovelli 和 Lucca 2011、Chen 等人 2007、Evans 和 Hudak 2007、Goepfert 等人 2008、Kraus 和 Pfeifer 1998 和 2001、Meng 等人 2010、Raber 等人 2002、Schickler 和 Thorpe 2001、Silvan-Cardenas 和 Wang 2006、Sithole 和 Vossleman 2004、Wang 和 Glenn 2009)。在此上下文中,过滤是指用于分离地形和非地形数据点的过程(即,将 LiDAR 点云分离为景观表面数据集(表示植被和人造物体的高程值)和地形表面数据集(表示裸地高程值)。地形表面数据集用于生成数字地形模型 (DTM);用于地貌研究和水力建模的连续表面模型。
