本文介绍了一种利用烟囱废气加热水的热回收系统 (HRS)。本文通过实验手段对 Khaled 等人提出的一种名为“多管罐”的废热回收系统进行了优化。文中详细描述了该系统的设计,并进行了组装和测试。为了研究改变头部形状对系统性能的影响,本文构建了两个不同的头部:一个圆柱形 (Cyl) 和一个锥形 (Con)。结果表明,锥形头部 (ConH) 的性能优于圆柱形头部 (CylH)。具体来说,在 275 分钟内,CylH 系统可将水温升高到最高 59 ◦ C,而 ConH 系统可将水温升高到 68 ◦ C。此外,在 400 分钟内,ConH 系统可将水温升高到 80 ◦ C。此外,经济和环境分析表明,当系统每月使用 140 次,每次 275 分钟时,ConH 系统可比 CylH 系统每月节省约 16 美元。此外,ConH 系统的投资回收期约为 CylH 系统的一半(6 个月)。最后,当系统每月使用 140 次时,ConH 系统可比 CylH 系统每年减少 2 吨二氧化碳排放。
通过新型聚合物加工技术,将进一步加深这种理解,用于制造和改性聚合物膜,通常通过静电纺丝、相转化、浸涂等方式增加功能。这些材料将针对实验室规模的性能测试进行优化,用于海水淡化和水处理工艺,包括但不限于微滤、超滤、纳滤、反渗透、正向渗透和膜蒸馏。将制定结构、性能和性能之间的关系以优化新材料。此外,还将研究各种工艺的附加功能和性能与能耗之间的关系。在适用的情况下,新技术将用于中试规模演示。
Intellihot的Electron IB3是一个启用网格的热电池和一个商业规模的无罐热水器。IB3可以与Intellihot的CO2热泵模型(IE6)搭配,作为热电池,以产生点播热水。IB3也可以作为独立的网格商业规模的无电罐热水器运行。
ABS 是洗涤剂配方中使用的第一种表面活性剂,但由于其分子结构是支链的,很难生物分解,使 ABS 成为一种对环境有毒的化合物。本研究旨在去除 MBAS 表面活性剂,采用植物修复和过滤方法相结合的方式,通过优化 pH 值、接触时间、植物类型和滤料等操作因素,去除洗涤剂废水中的表面活性剂 (MBAS) 化学需氧量 (COD)。选择了水浮莲 ( Pistia stratiotes ) 和凤眼蓝 ( Eichhornia crassipes ) 作为植物种类,以硅质活性炭为滤料。将水浮莲和凤眼蓝与洗涤剂废水样品一起放入 10 升反应器中培养 6 天和 12 天。使用时将滤料放入反应器,并进行曝气。每次试验中,COD 降低效率为 81.73%,表面活性剂降低效率为 99.42%,这被认为是由于植物的吸附和过滤过程所致。水生莴苣 ( Pistia stratiotes ) 植物在所有评价的品质中具有最大的吸附能力,根部表面活性剂含量为 27543.24 (mg/kg MBAS),而水葫芦植物仅吸收了 2597.95 (mg/kg MBAS)。
2 楼和 3 楼座位区、靠近 1 楼和 2 楼休息区(货运电梯对面)以及地面和 3 楼休息区内。有单独的容器:“垃圾填埋场”用于不可回收物、脏容器和餐巾纸;“纸”用于无干粮/无蜡纸制品;“塑料和罐头”用于 1-7 号塑料、铝罐和钢罐。
每个架子都有一个循环的供水系统,其中从位于架子底部的大型头罐(约200升)中抽出海水到水族馆,从那里返回到头罐。在那里,首先通过配备有机械和生物过滤器的丙烯酸过滤单元对水进行过滤和清洁,然后是蛋白质撇渣器,最后是紫外线辐射。
全球 80% 的饮料罐生产采用重量优化的 STARcan 圆顶设计,全球 50% 的气雾罐生产采用轻质 ReAl® 合金(合计在 2020-2030 年目标期的前五年内减少温室气体排放超过 320,000 公吨)。
通过热-水-力学 (THM) 耦合数值建模,研究了大型两用罐 (DPC) 中乏核燃料 (SNF) 地质处置的热管理。DPC 是专为 SNF 储存和运输而设计的容器,如果确定可用于永久地质处置,则可以提供具有成本效益的处置解决方案。然而,直接处置 DPC 的挑战之一是热管理,以避免工程屏障系统 (EBS) 过热,包括用作保护性缓冲器的膨润土回填料。模型模拟表明,使用经过热工程设计以实现高导热性的回填料可以将 EBS 温度降低到可接受的水平,以便在回填料隧道中处置大型废料罐。另一方面,使用高导热回填料不会降低处置库关闭几千年后可能出现的远场岩石峰值温度。这种较长期的母岩峰值温度会产生热孔隙弹性应力和地质力学变化,在储存库的热管理和设计中必须考虑到这些变化。