在测试中,丝膜在小于1 bar的真空压力下达到每小时56.8升的水流量。允许有益的矿物质通过,该膜拒绝了超过99%的水中有机污染物,例如臭名昭著的全氟化合物(也被广泛称为永远的化合物),这引起了全球对其毒性和持久性的关注。
在这项研究中,使用相位反转方法和浸没技术在非溶剂环境中使用磺化聚乙烯磺酮开发了纳米滤膜。聚乙烯基吡咯烷酮(PVP)用作孔形成剂,二甲基乙酰氨酰胺(DMAC)用作溶剂。这些膜的固有疏水性归因于它们的磺化聚乙烯成分,这是通过引入的氧化石墨烯纳米颗粒来缓解的。此外,将曙红单体引入氧化石墨烯,以增强氧化石墨烯纳米片的分散体。各种表征技术,包括电子显微镜,傅立叶转换红外(FT-IR)光谱,能量分散性X射线(EDX)光谱,渗透率测试,盐排斥,通量测量,接触角度分析和水含量评估,以实现修改后的MEMBRANES。电子显微镜图像示出了在表面下方的多孔空隙形成,并在改良的膜内形成了更宽的通道。ft-ir分析显示,曙红Y-GO纳米片中存在官能团(O = C-BR)。引入曙红纳米片的引入导致渗透率明显变化,盐排斥增加,尤其是硫酸钠(Na 2 So 4)。此外,纳米颗粒包含显着改善了亲水性和增强的水含量。此外,添加纳米颗粒导致孔隙度和孔径的增加。这种最佳的纳米颗粒浓度突出了研究的关键发现。最终,校正样品包括0.01 wt%的纳米颗粒表现出较高的性能,尤其是在盐通透性和硫酸钠(Na 2 So 4)中,与其他样品相比。
结论:本报告中提供的验证数据明确地确定Dorsan Nylon 6,6膜滤纸是制药行业中液体过滤的特殊解决方案。尼龙6,6材料具有更好的颗粒能力保留能力,超过了常规过滤器的性能。膜滤纸的高流量,广泛的吞吐量和最少的可提取特性使其成为多种药物应用中必不可少的资产。有了确保生物安全性,Dorsan Nylon 6,6膜滤纸是液体过滤,提高行业标准和重新定义药物过滤技术景观的绝佳选择。本报告旨在帮助过滤器用户满足制药行业内监管机构的验证要求。
氧化石墨烯(GO)在水纯化领域中具有巨大的潜力。但是,当直接应用于实际废水废水时,纯GO膜遭受诸如污染灵敏度和有限稳定性等缺点。为了应对这些挑战并解锁GO膜的全部潜力,通过与ZIF-8的纳米颗粒的插入(一种沸石咪二唑酯框架)的插入,已经开发出了新型的纳米复合膜。制备的GO/ZIF-8(GZ)纳米复合膜表现出增强的亲水性和特殊的水纯化能力。具体来说,与原始的GO参考Mem Brane相比,GZ膜表现出了超过两倍的渗透性增强。这种增强效果与盐和有机污染物的抗死性能和竞争性排斥率相结合。gz膜通过3种工业废水废水的跨流过滤有效地用于纯化。与原始的GO参考膜相比,它们显示出改善的分离性能,并且在跨流条件下的高稳定性。使用结构和形态学分析阐明了GZ膜高性能的起源。这项工作强调了使用基于石墨烯的膜在水处理领域取得的重大进展。
超滤(UF)膜通常用于下游过程,例如抗纯化和浓度的抗体,mRNA疫苗和病毒样颗粒(VLP)。超滤也仍然是涉及病毒载体和基于脂质载体的新兴细胞和基因疗法(CGT)的关键纯化工具。特别是,由于其低剪切,低结垢和可靠的性能,因此比CGT空间中的板和框架盒要优选空心纤维形式。另一方面,更适当地适用于微米大小的颗粒,例如在细胞培养灌注过程中保留细胞。图1显示了带有亚微米孔的5-50 nm和MF膜不等的UF膜的孔径分布,这些膜说明了生物过程过滤应用中使用的孔径较宽。显示的数据来自从行业中不同类型的膜获得的典型结果,以突出两种孔径面额之间的对比度。
使用超支化聚酰胺胺作为添加剂,通过非溶剂诱导相转化制备了具有改进的防污和抗生物污染性能的聚氯乙烯 (PVC) 超滤膜。PVC 通过亲核取代反应与商用聚酰胺胺纳米材料 Helux-3316 反应到铸造溶液中。通过 ATR-FTIR 和元素组成研究了纯膜和功能化膜的组成。使用荧光染料荧光胺跟踪氨基。使用表面 ζ 电位和水接触角来测量测试膜的表面电荷和亲水性。氨基的加入增加了膜的亲水性和表面孔隙率,从而提高了渗透性。功能化膜在过滤 BSA 溶液时表现出防污性能,并且比 PVC 膜的不可逆污染更低。 Helux 部分附着在 PVC 上可产生具有抗生物污染功能的膜,这可以通过带正电荷的 Helux 部分与带负电荷的细胞膜相互作用来解释。过滤过程中附着在膜表面的细胞生长减少量达到革兰氏阳性菌金黄色葡萄球菌的 1-log。该研究表明,在铸造溶液中加入浓度为 1 wt% 的超支化纳米材料可显著提高膜的性能,包括渗透性和防污潜力。
