最近已显示:损害累积和SC-FTO型设备的故障仅用于短路脉冲比给定临界值更长的短路脉冲,此后,栅极裂口电流明显增加; 由于热机械应力和随后的温度相关的顶部金属化挤出,降解和失效是在顶部SIO 2中产生裂纹的结果[1]; 遵守临时偏置条件,由于金属路径在设备顶部区域融合效果,因此可以恢复功能[2]。在此,提出和讨论了一个新的结果,即直接在门和排水之间流动的泄漏电流的检测,也影响晶体管的短路性能和稳健性,为此表明,短路期间门源偏置的值也起着重要作用。
电穿孔会导致细胞膜通透性暂时增加,并导致兴奋细胞和非兴奋细胞的跨膜电压 (TMV) 发生长时间变化。然而,这些 TMV 变化的机制仍有待完全阐明。为此,我们使用 FLIPR 膜电位染料将两种不同的细胞系暴露于单个 100 µ s 电穿孔脉冲后,在 30 分钟内监测 TMV。在表达极低水平内源性离子通道的 CHO-K1 细胞中,脉冲暴露后的膜去极化可以用非选择性漏电流来解释,这种漏电流一直持续到膜重新密封,使细胞能够恢复其静止的 TMV。在表达多种不同离子通道的 U-87 MG 细胞中,我们意外地观察到初始去极化阶段之后的膜超极化,但仅在 33 ◦ C 时发生,而在 25 ◦ C 时未发生。我们开发了一个理论模型,该模型得到了离子通道抑制剂实验的支持,该模型表明超极化在很大程度上可归因于钙激活钾通道的激活。离子通道激活与 TMV 和细胞内钙的变化相结合,参与各种生理过程,包括细胞增殖、分化、迁移和凋亡。因此,我们的研究表明离子通道可能是影响电穿孔后生物反应的潜在靶点。
将 DIP 开关 (123) 设置为所需的灵敏度,将锁存继电器 (5) 设置为开或关,将继电器 (6) 设置为正常(故障安全)或反向功能。当电源连接到 A1 和 A2 时,并且没有差动电流通过传感线圈,表示差动和继电器开启(正常功能)的绿色 LED 将亮起。当检测到超过设定限值的差动电流时,其中一个红色差动 LED 将亮起,显示泄漏到地面的电缆的极性。(对于超过 15 A 的泄漏电流,两个红色差动 LED 都将亮起,表示 DDCB 已饱和并且无法检测到哪条电缆在泄漏)。当检测到高电流时,OFF 延迟开始消逝,由绿色 LED 指示,并且继电器将在设定时间到期后释放。如果选择了锁存功能,继电器将保持断电状态(正常功能),并且红色锁存 LED 将亮起,直到激活重置按钮。如果锁存功能未激活且差动电流低于设定水平,则绿色差动 LED 将亮起,并且 ON 延迟开始消逝,由绿色 LED 指示。当设定时间到期时,继电器将吸合(正常功能)。
MTCMOS 电路的构造通常如图 2 所示。逻辑电路和电源线之间是高 Vth 的 PMOS 和 NMOS 晶体管。为了实现实时逻辑功能,在系统处于活动状态时激活休眠信号。在休眠模式下,具有较高 Vth 值的晶体管被关闭,以将逻辑电路与电源线分开。在待机状态下,这会将流中的泄漏降低到阈值以下。对于低功耗、高速设备,MTCMOS 可能是制造商的可行选择。在构建具有 MTCMOS 架构的电路时,确定更高阈值晶体管的尺寸是一项重要的考虑因素。在 6T FinFET SRAM 的上部和下部,放置了更高阈值的晶体管,如图 11 所示。这种更高的
6.1在电路QED测量设置中结合腔外耗散和腔内衰减。。。。。。。。。。。。。。。。。。。153
近年来,电子技术的突破使金属氧化物半导体场效应晶体管 (MOSFET) 的物理特性不断提升,尺寸越来越小,质量和性能也越来越高。因此,生长场效应晶体管 (GFET) 因其优异的材料特性而被推崇为有价值的候选者之一。14 nm 水平双栅极双层石墨烯场效应晶体管 (FET) 采用高 k 和金属栅极,分别由二氧化铪 (HfO 2 ) 和硅化钨 (WSi x ) 组成。Silvaco ATHENA 和 ATLAS 技术计算机辅助设计 (TCAD) 工具用于模拟设计和电气性能,而 Taguchi L9 正交阵列 (OA) 用于优化电气性能。阈值电压 (V TH ) 调整注入剂量、V TH 调整注入能量、源极/漏极 (S/D) 注入剂量和 S/D 注入能量均已作为工艺参数进行了研究,而 V TH 调整倾斜角和 S/D 注入倾斜角已作为噪声因素进行了研究。与优化前的初始结果相比,I OFF 值为 29.579 nA/µm,表明有显著改善。优化技术的结果显示器件性能优异,I OFF 为 28.564 nA/µm,更接近国际半导体技术路线图 (ITRS) 2013 年目标。
一、SRAM 静态随机存取存储器 (SRAM) 是一种静态存储单元,它使用触发器来存储每位数据。它广泛应用于各种电子系统。SRAM 存储器中的数据不需要定期刷新。与其他存储单元相比,它速度更快,功耗更低。正因为如此,SRAM 是 VLSI 设计师中最受欢迎的存储单元。 SRAM 操作 传统的 6T SRAM 单元由两个背靠背连接的反相器组成。第一个反相器的输出连接到第二个反相器的输入,反之亦然。基本上,SRAM 执行三种操作,即保持、读取和写入操作。 保持操作:在待机操作或保持操作中,字线 (WL) 处于关闭状态。连接到字线和 B 和 BLB 线的存取晶体管也处于关闭状态。为了使 SRAM 以读取或写入模式运行,字线应始终处于高电平。 写入操作:存储数据的过程称为写入操作。它用于上传 SRAM 单元中的内容。写入操作从分配要写入 Bit 的值及其在 Bit' 的互补值开始。为了写入“1”,Bit 预充电高电压,并将互补值“0”分配给 Bit'。当通过将 WL 置为“高”将 M5 和 M6 设置为 ON 状态时,在 Bit 处分配的值将作为数据存储在锁存器中。M5 和 M6 MOS 晶体管设计得比单元 Ml、M2、M3 和 M4 中相对较弱的晶体管强得多,因此它们能够覆盖交叉耦合反相器的先前状态。读取操作:恢复数据的过程称为读取操作。它用于获取内容。读取操作首先将字线“WL”置为高电平,这样在将位线和位线预充电至逻辑 1 后,访问晶体管 M5 和 M6 均将启用。第二步是将存储在数据和数据线中的值传输到位线,方法是将位保留为其预充电值,并通过 M4 和 M6 将位线放电至逻辑 0。
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
B化学与化学生物学系B化学与生物工程系,伦斯勒理工学院,Troy,Troy,纽约12180,美国
关键词:工程变更单 (ECO)、状态相关泄漏功率、总负松弛 (TNS)、亚阈值泄漏功率。1. 引言无线通信设备、网络模块设计模块的主要性能参数是最小化功率。另一方面,更高的性能、良好的集成度、动态功耗是推动 CMOS 器件缩小尺寸的一些参数。随着技术的缩小,与动态功耗相比,漏电流或漏功率急剧增加。静态功耗增加的主要原因是漏功率,它涉及许多因素,如栅极氧化物隧穿泄漏效应、带间隧穿 (BTBT) 泄漏效应和亚阈值泄漏效应 [1]。器件在电气和几何参数方面的差异,例如栅极宽度和长度的变化,会显著影响亚阈值漏电流 [2]。某些泄漏元素包括漏极诱导势垒降低 (DIBL) 和栅极诱导漏极泄漏 (GIDL) 等,[3]。 65 nm 及以下 CMOS 器件最重要的漏电来源是:栅极位置漏电、亚阈值漏电和反向偏置结处 BTBT 引起的漏电。电压阈值的降低会导致亚阈值电流的增加,这允许在电压下降的帮助下保持晶体管处于导通状态。由于缩放
