量子场是物理世界的基本组成部分,它描述所有能量尺度上的物质量子多体系统以及电磁辐射和引力辐射。量子场工程实现了前所未有的测量灵敏度,典型案例是利用压缩光将激光干涉引力波天文台 (LIGO) 的本底噪声降低到散粒噪声极限以下 [1]。在连续变量 (CV) 量子场(又称量子模(代替离散变量 (DV) 量子位))中对量子信息进行编码,已经实现了数百万个量子模上的多体纠缠。这种规模在任何量子位架构中都是无与伦比的,它为量子计算、量子通信和量子传感定义了新的视野和范式。基于量子模式的纳米光子集成设备有可能超越基于量子比特的噪声中型量子 (NISQ) [ 2 ] 计算设备的性能,从而定义未来的量子技术。量子模式的自然实现是使用量子光,这也适用于传感 [ 3 – 6 ] 和通信。
量子状态的实时和想象的时间演变是研究量子动态,准备接地状态或计算热力学可观察物的强大工具。在近期设备上,各种量子时间演变是这些任务的有前途的候选人,因为可以量身定制所需的电路模型以权衡可用的设备功能和近似准确性。但是,即使可以可靠地执行电路,由于量子几何张量(QGT)的计算,变异量子时间演化算法对于相关系统大小而迅速变得不可行。在这项工作中,我们通过利用双重公式来规避对QGT的明确评估来解决这个缩放问题。我们演示了海森伯格汉密尔顿的时间演变的算法,并表明它以标准变化量子时间演化算法的成本的一小部分准确地重现了系统动力学。作为量子假想时间演变的应用,我们计算了Heisenberg模型的热力学观察到的每个位置的能量。
摘要 — 量子网络由相互连接的量子服务器组成,这些服务器能够进行通信和协作以完成计算任务。该网络中的量子服务器必须相互识别和验证。例如,当量子服务器打算在另一台机器上执行计算任务时,量子服务器必须验证其他量子服务器的真实性,以保持对委托计算的信心。虽然已经提出了几种对这些量子计算机进行指纹识别的方法,但许多方法都需要大量资源,目前并不实用。为了解决这个问题,我们引入了 Q-ID,这是一种轻量级的指纹识别方法,可以准确识别量子计算需求可忽略不计的量子服务器。Q-ID 通过在两个不同的噪声级别上运行用户的任务电路来运行,并使用由此产生的性能差距作为量子服务器的唯一标识符。此外,我们还开发了一种误差演化算法,允许用户在本地估计这种性能差距。通过将估计的差距与实际差距进行比较,用户可以有效地识别或区分网络中的量子服务器。我们在 IBM 量子平台上的实验展示了我们方法的有效性和优势。索引术语 — 量子指纹识别、量子网络、量子计算、误差演化
需要特定的c c类型的转换类型,这些转换不是天然发生的。5为了利用这些过程中的巨大酶良好的益处,已经设计了人工酶来产生新的催化反应性。6 - 8个促酶,从而产生基本的酶,然后可能会受到定向进化的能力,以实现通常与酶催化相关的高活性和选择性。9,10然而,尽管有明显的进展,但大多数人促酶的催化效率尚未与天然酶相媲美。11迄今为止,使用人工酶的大多数定向进化运动仅针对催化中心近距离的残留物,以直接影响其化学环境。越来越清楚的是,就像天然酶一样,整个蛋白质的12个结构合作也需要与人工酶促进酶进行催化。例如,刘易斯和同事观察到在模型环丙烷化反应中,在引入脱离活性位点的突变后,由人工hodios的模型环化反应提高了对映选择性。13 o s,远端突变的引入产生由蛋白质的先天结构动力学决定的细微结构重排,该结构动力学已在天然酶的进化中被逐渐构成。18,19是Hilvert等人设计的KEMP消除酶HG3.17的局部示例。14,15那些可以间接地通过调节结构动力学的催化活性的残基称为动力学的远端位点或热点。16,17针对定向演化算法中这些热点的16,17可以将构象动力归为催化生产构象,从而导致高度效率高的设计师酶。能够通过开发具有催化能力的构象合奏的速率加速度提高10 8倍。20当前,它们的鉴定阳离子o cen依赖于广泛的分子动力学(MD)模拟,这对工作的吞吐量构成了显着的限制。21尽管最近已经描述了基于机器的新策略并保持了大大减轻计算费用的希望,但对大型培训数据集的需求阻碍了他们在鲜为人知的系统中的应用。为了确定远端突变和远距离网络在人工酶中的作用,我们以23,24的lactocococococcal多药耐药性调节剂(LMRR)为示例,是探讨了以较广泛的新型到Nature Adectivitivitivities量身定制的混杂蛋白SCA效率的示例。该蛋白质属于padr遗传因素的PADR家族,并调节乳酸乳酸菌中LMR操纵子的表达。lMRR的特征是独特的构象thimational质量和结构可塑性25,26,在其大型恐惧孔中引起了宽阔的配体滥交。然后将这些基本酶定向进化,从而导致专业酶显着增加活性和(对映)的选择性。引入各种人工催化部分,金属复合物,27个非典型氨基酸(NCAA),28甚至两者均为29个具有多种新型催化性活性的endow LMRR。但是,迄今为止,迄今为止,定向进化仅集中在孔内的残基上,以优化新创建的活性位点的结构。在这里,我们展示了如何通过利用LMRR的构象动力学来进一步增加这些设计师酶之一的活性。