● Linking health and environmental data important for understanding the impact of environmental variables on health ● Multiple challenges linking the data: privacy concerns for health data, scale of both data and more ● Scope existing data and metadata standards in both fields ● Document linkage challenges and ideal standards that would ease linkage
2。大多数代理商都做得很好,但许多机构在执行他们的计划方面做得很差。我们看到了一个机会,不仅可以重新发明计划的创建和传达方式,还可以重塑代理商如何管理其计划的执行。
John Randazzo 上尉 | NSA 那不勒斯指挥官 Arturo Rivera 先生 | 那不勒斯小学校长 Chris Beane 先生 | 那不勒斯高中校长 Sarah Dastrup 女士 | NSA 那不勒斯学校联络员 Donald Wells 先生 | MWR 主任 John Parizek 指挥官 | 公共工程官员
结构稳定性是航空航天、土木工程和机械工程等多个工程专业课程的基础硕士课程。该学科的目标是开发在不同载荷作用下结构稳定性的分析方法,以用于结构元件的设计[1]。在航空航天工程的背景下,结构稳定性硕士课程介绍了常见航空航天结构元件(如梁、板和壳)的屈曲现象[2]。在正常授课中,学生将学习控制每个结构元件屈曲的方程的解析推导。这些数学表示总结和组织了有关现象的定量信息,例如变量之间的关键关系。然而,解析推导表现出高度的数学形式主义、抽象性和复杂性[3]。因此,授课往往侧重于数学程序,而不是它们所代表的物理现象。此外,这些方程式无法为从未经历过屈曲的学生提供完整的物理现象图景[4]。因此,学生往往难以将数学表达式与真实世界场景联系起来,也难以理解结构元件的屈曲行为[3]。为了克服这些限制,可以将屈曲试验演示作为常规教学的补充活动。事实上,实验室试验重现了物理现象[5],因此为学生提供了一个环境,让他们直接体验结构的屈曲,并与不同于分析模型的表达式进行互动。因此,本研究的目的是提供一个原理证明
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
本文介绍了GenH2R,这是一个学习基于远见的人类到机器人(H2R)han-dover技能的框架。目标是为机器人配备能够以各种复杂轨迹的人类传递的几何形状可靠接收对象。我们通过通过全面的解决方案进行大规模学习H2R移交,包括程序模拟资产创建,自动演示式概述和有效的模仿学习。我们利用大型3D模型存储库,敏感的GRASP生成方法和基于曲线的3D动画来创建名为GenH2R-SIM的H2R交换模拟环境,并通过三个尺度级传递了现有模拟器中现有模拟器中的场景数量。我们进一步引入了一种蒸馏友好的演示生成方法,该方法自动产生了一百万个适合学习的高质量演示。最后,我们提出了一种4D模仿的学习方法,该方法通过将来的预测目标增强,以将示范示例提炼为视觉运动切换政策。在所有情况下,模拟器和现实世界中的实验评估都表现出比基线的显着提高(至少 +10%的成功率)。
