抽象的热系统,包括利用太阳能和废热恢复的热系统,通常在能源供应和需求之间具有不匹配。至关重要的是实施一种热能储存(TES)以有效利用能源。这项研究评估了与太阳能平板收集器合并的堆积床潜热热能存储(LHTES)单元的热性能。结果表明,当孔隙率从0.49增加到0.61时,充电所需的时间会减少7%,并且当流速从2千克/分钟升高时,充电时间降低了2.5%。此外,进行了研究以研究不同种类的石蜡(RT30,RT28HC,WAX,RT58和P56-58)的性能,并比较每种TES储罐的热能,从而导致RT58 TES储罐具有最高的热容量。
Philip Eames 目前是拉夫堡大学可再生能源教授兼可再生能源系统技术中心主任。他曾担任阿尔斯特大学太阳能应用教授兼建筑环境研究所主任以及华威大学能源效率与节能教授。25 年来,他一直从事可再生能源系统、建筑和工业过程能源高效利用以及显热和潜热存储领域的研究,他的研究获得了 EPSRC、欧盟和 TSB 等研究资助机构提供的超过 700 万英镑的资金支持。他在学术期刊和会议论文集上发表了 170 多篇研究论文。他目前在热能存储领域的研究活动包括一项由 UKERC 资助的研究,旨在评估热能存储在英国能源系统中的未来作用。
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
容量,合适的相变温度和化学稳定性。17 - 20然而,N-烷烃在太阳能利用中的大量应用是在相变期间受到液体泄漏问题的严重限制。将N-烷烃封装以形成核心 - 壳微囊被认为是一种有效的方法。但是,封装过程始终很复杂,并且封装的PCMS的相变焓显着减少。21 - 23因此,迫切需要制造含有高相变焓,形状和热稳定性的PCM的N-烷烃。最近,已引起广泛的关注,以浸入三维(3D)气凝剂中的PCM,以构建形状稳定的防漏PCM复合材料。24 - 26尤其是纳米 - 闪烁的纤维素(NFC)气凝胶不仅可以有效地防止固体 - 液态PCM的泄漏,而且还可以对环境友好。因此,有必要以NFC气凝胶作为支撑材料研究固体 - 液相变化材料。Kim等。 27使用甲基纤维素(CMC)制备的碳泡沫。 此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。 热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。 这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。 Lei等。 28通过准备了一种新颖的CPCMKim等。27使用甲基纤维素(CMC)制备的碳泡沫。此外,复合PCM(CPCM)通过真空浸渍将促红节醇纳入纤维素碳泡沫中。热循环测试表明,与纯赤丝醇相比,CPCM表现出的相变焓损失要少得多。这些结果可能发生了,因为碳泡沫的孔可以防止促赤醇的泄漏,从而最大程度地减少了通过毛细管热循环测试期间的潜热损失。Lei等。 28通过准备了一种新颖的CPCMLei等。28通过
摘要:在这项研究中,我们开发了一种热存储介质,其中包括充满有机相位变化材料(PCM)的多孔活性炭,该碳利用相变的潜热在冷却过程中吸收热量和释放热量。对于活化的碳,我们同时使用了基于木炭的粉状活性炭(250-350均)和颗粒状活性炭。实验中使用的有机相变材料是十二烷,三烷,四烷和五烷。材料特性,例如导热率,潜热和熔融温度范围,结果观察到结果是一致的。还评估了所提出的培养基的周期性热性能。值得注意的是,用有机PCM的混合物填充活化的碳导致最高的温度调节作用。这项研究中提出的程序和结果有望进一步改善含有稳定温度的PCM的热储存介质的性能,包括建立加热和冷却。
个人热管理可有效管理皮肤微环境、提高人体舒适度、降低能耗。在个人热管理技术中,由于湿敏纺织品中水分蒸发潜热高,导致热量传递和水分传递共存、相互作用。近年来,随着材料科学和创新聚合物的快速发展,湿敏纺织品已被开发用于个人热管理。然而,实验室规模的概念设计与实际纺织品之间存在很大差距。本文综述了基于襟翼开合的湿敏纺织品、基于纱线/纤维变形的湿敏纺织品和基于纺织品设计的个人体温调节的汗液蒸发调节,并讨论了相应的机制和研究进展。最后,考虑了现有的工程和科学限制以及未来的发展,以解决现有问题并加速湿敏纺织品和相关技术的实际应用。
随着可再生能源的使用日益增多,为了提高电力弹性(在调节储备能力的同时承受供需之间显著和突然的不平衡的能力),热电厂系统的涡轮旁路系统等中采用了储热系统,以便可以储存启动期间的废热或极低负荷条件下锅炉和涡轮/发电机输出之间的不匹配热量。这种储存的热量可以在高负荷运行时将其能量释放到预锅炉和/或锅炉来发电,从而节省约 2% 或更多的能源。通过利用相变材料(PCM:应用熔化/凝固过程)的大量潜热或通过增加熔盐和水等显热存储材料的温差,可以使储热设备变得紧凑,从而可以安装在发电厂内。我们目前正在开发这种系统,以与电池存储系统相当的单位电容量价格实现其实际应用。| 1. 简介
摘要:近年来,相变材料(PCM)越来越受到关注,因为它们可以以明智和潜热的形式储存热能,并且它们用于高级技术解决方案,以保护可持续和废物能量。重要的是,大多数当前应用的PCM都是由不可再生来源生产的,其碳足迹与某些环境影响有关。但是,新型PCM也可以使用绿色材料设计和制造,而不会对环境产生略有影响。在这项工作中,描述了PCM应用中基于生物的聚合物的当前知识状态。生物基聚合物可以用作相变材料,以及PCMS封装和形状稳定化,例如纤维素及其衍生物,壳聚糖,木质素,明胶和淀粉。对最终PCM的属性及其在各个部门的应用潜力进行评估。已经提出了改善其热量存储特性以及赋予多功能特征的新型策略。还讨论了基于生物的聚合物如何在各个工业领域的新环境安全PCM的潜力中扩展。
摘要 可持续家庭能源系统的一个重要组成部分是自给自足的能源生产和使用。尽管过去已经广泛研究了家庭能源生产和使用的可持续解决方案,但对能源储存的研究却很少。本文特别关注热能储存。目前有三种相互竞争的设计:显热、潜热和热化学热储存系统。问题是哪一种会成为主导设计。我们探讨了设计主导地位的相关先决条件,并将其应用于本案例,以确定它们的权重。此外,还评估了这三种替代方案中哪一种最有可能实现市场主导地位。技术特性最重要,潜热储存技术最有可能实现设计主导地位。本文为正在进行的研究做出了贡献,该研究试图为不同领域的技术主导因素分配权重。