摘要 沸腾传热是液体的显热传递和汽化引起的潜热传递的结合。为了研究沸腾中的显热传递,液-气多相流中液体的温度测量必须发挥重要作用。尽管已经提出了几种用于沸腾现象温度测量的光学方法,但由于许多沸腾气泡对照明和观察的干扰,直接测量相对较高热流密度下的沸腾温度场具有挑战性。本研究提出了一种新颖的温度测量方法,利用密闭空间、两块透明板之间的夹层空间和双色激光诱导荧光温度测量来测量多个沸腾气泡周围的液体温度分布。密闭空间限制了流体运动,使得可以照亮和观察几乎整个感兴趣的区域。两种荧光染料的强度比显示了局部和时间温度,而无需任何物理探针的侵入。我们成功地观察到了过热液体从传热表面的清除,证明了该方法的实用性。利用该方法从实验数据中提取出的多个位置的温度时间变化与沸腾气泡的行为相一致,并对该方法尚待解决的问题进行了讨论。
生物乙醇 - 荷氨基糖混合物用于减少SI发动机(SIE)的化石燃料消耗。在这项实验研究中,在低负载下研究了汽油生物乙醇不同混合物对化油器,单缸和四冲程Sie的性能和排放的影响。测试以各种速度和恒定的等效比进行。结果表明,随着乙醇百分比的增加,ηt,b降低,而潜在的蒸发热随着乙醇混合百分比的增加而增加。考虑到恒定的当量比,增加乙醇的百分比会导致进气质量和体积效率的降低,同时降低了体积效率并增加潜热的热量导致空气燃料混合物温度的降低,导致火焰降低,并导致火器消失。t熄灭,T身体降至8.37%和12.63%。NO X的排放也降低了93.73%。当然,UHC将增加高达160%。CO和CO 2的排放分别增加了92.5%,分别降低了23.98%。总而言之,在汽油中添加乙醇会导致ηth,b的降低,而无X和CO 2污染物的发射显着降低;但是,它将增加UHC和CO排放。
如何快速可靠地克服挑战,以促进锂基盐在潜热存储技术中的开发?原位实时显微镜用于通过微观机制了解材料的理论和实验宏观性质之间的差异。尽管无机锂盐对空气/湿度敏感,且普遍认为 LiOH 在干燥环境或真空下会分解,所以不能用于在显微镜室内合成新材料,但仍证明了该方法在无机锂盐上的可行性。以 Li 4 Br(OH) 3(一种不常见的、有前途的相变材料)为例,调查了与理论能量密度 434 kWh/m 3 约 30% 的偏差来源。起始材料的水合/脱水是主要参数之一,应用温度协议,在形貌和性能方面引起与目标材料不同的偏差。如果不考虑这一标准,则可能会对设备在使用过程中的存储容量造成灾难性的影响。本研究重点介绍了避免这些缺陷的解决方案。尽管操作条件不同,但微观尺度上的结果与宏观尺度上的结果也得到了证明© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要:开发新材料和新方法以实现有效的能源消耗和可再生能源的使用是现代材料科学的当前趋势之一。在这方面,许多研究都集中在有效收集和储存太阳能以用于各种应用。相变材料 (PCM) 已知能够通过可逆相变吸收和释放潜热来储存阳光的热能。因此,PCM 有望作为建筑材料和涂料的功能添加剂,用于建筑和工业中的高级温度调节。然而,裸露的 PCM 的实际应用有限。有机 PCM(如石蜡)在液态下会发生材料泄漏,而无机 PCM(如盐水合物)在多次相变后缺乏长期稳定性。为了避免这种情况,人们深入研究了多孔基质中 PCM 的负载以及所得复合材料的热性能。将 PCM 加载到天然多孔或层状粘土材料的微容器中似乎是一种简单且经济有效的封装方法,可显着改善 PCM 的形状和循环稳定性。此外,将功能性粘土容器加入建筑材料中可以提高其机械性能和阻燃性能。本文总结了基于 PCM 负载粘土微容器的复合材料制备的最新进展,以及它们作为调温材料功能添加剂的未来前景。
摘要。地球表面和大气之间的微量气体交换对大气成分有重大影响。空气涡流协方差可以量化局部到区域尺度(1-1000 公里)的地表通量,可能有助于弥合自上而下和自下而上的通量估计之间的差距,并为生物物理和生物地球化学过程提供新的见解。美国宇航局碳空气通量实验 (CARAFE) 利用美国宇航局 C-23 Sherpa 飞机和一套商用和定制仪器,以高空间分辨率获取二氧化碳、甲烷、显热和潜热的通量。本文介绍了 CARAFE 有效载荷的关键组件,包括气象、温室气体、水蒸气和地表成像系统。连续小波变换沿飞机飞行轨迹提供空间分辨的通量。深入讨论了通量分析方法,特别强调了不确定性的量化。导出的表面通量中典型的不确定性为 40-90%(标称分辨率为 2 公里)或 16-35%(全程平均,通常为 30-40 公里)。CARAFE 已于 2016 年和 2017 年在美国东部成功执行了两次任务,量化了森林、农田、湿地和水域的通量。这些活动的初步结果被呈现出来,以突出该系统的性能。
摘要。地球表面和大气之间的微量气体交换对大气成分有重大影响。空气涡流协方差可以量化局部到区域尺度(1-1000 公里)的表面通量,可能有助于弥合自上而下和自下而上的通量估计之间的差距,并为生物物理和生物地球化学过程提供新的见解。美国宇航局碳空气通量实验 (CARAFE) 利用美国宇航局 C-23 Sherpa 飞机和一套商用和定制仪器,以高空间分辨率获取二氧化碳、甲烷、显热和潜热的通量。本文介绍了 CARAFE 有效载荷的关键组件,包括气象、温室气体、水蒸气和表面成像系统。连续小波变换沿飞机飞行轨迹提供空间分辨的通量。深入讨论了通量分析方法,特别强调了不确定性的量化。 导出的表面通量中典型的不确定性为 40-90%(标称分辨率为 2 公里)或 16-35%(全程平均,通常为 30-40 公里)。 CARAFE 已于 2016 年和 2017 年在美国东部成功执行了两次任务,量化了森林、农田、湿地和水域的通量。 这些活动的初步结果被呈现出来,以突出该系统的性能。
摘要:太阳能干燥机是一种利用太阳作为能源来干燥农产品的设备。太阳能干燥是一种干燥农产品以保持其质量更长时间的优越方法。太阳能是间歇性能源,因此干燥机仅在日照时间可用。此外,与人工干燥过程相比,太阳能干燥机的干燥过程耗时更长。使用热能存储和太阳能干燥机可以最大限度地减少这种负面影响。潜热储能是一种比显热储能更有吸引力的方法,因为它具有高储能密度。在目前的研究中,回顾了太阳能干燥机和相变材料作为太阳能干燥机领域的最新研究。本综述总结了基于干燥机类型、TES 类型和工作方法的先前研究工作。为太阳能干燥技术和不同的 TES 开发了思维导图和图表等。首先介绍干燥机的类型,然后介绍 TES 的类型和 PCM 作为 TES 的使用。讨论了不同干燥机和 TES 的最新工作。在本文的后续部分,还回顾了在干燥机中使用 PCM 作为 TES 的方法,以此作为通过延长工作时间来提高性能以满足食品保存要求的一种方法。
相变材料(PCM)的潜热热能存储(LHTES)21系统已成为一种增加兴趣的技术。已经报道了有关PCM传热增强的广泛实验和22个数值研究。23然而,仍然缺乏对PCM传热增强的影响24组合的影响以及几何优化对25 LHTES系统整体存储性能的影响。在这项工作中,采用了有效性索引,有效的能源26存储比基于有效性-NTU理论(建立了27个比较TES系统的标准)来评估28 AN LHTES系统的有效储能密度。使用共轭传热分析,我们研究了关键参数和流动条件的29个影响,包括几何参数30(管长度直径比/𝑑𝑑/𝑑𝑑/𝑑𝑑/𝑑𝑑𝑑𝑑,PCM体积比𝜆𝜆),湍流层层层次与HTF的湍流31条件与HTF的条件,以及有效的PCM热电导率,以及有效的PCM热电导率。发现有效的能量储能比33随着管长的长度比率增加,并且存在最佳的PCM体积比。34增加有效的PCM热导率仅有效增强35
摘要:熟练的亚季节极端高温和降水预测可大大造福于水资源管理、公共卫生和农业等多个部门,以减轻极端事件的影响。我们开发了一个统计模型来预测美国北半球夏季每周极端高温天数和 14 天标准化降水指数 (SPI)。我们使用美国土壤湿度的主要主成分和基于北太平洋海面温度 (SST) 的指数作为预测因子。该模型在美国东部的第 3-4 周优于 NCEP 气候预报系统第 2 版 (CFSv2)。研究发现,北太平洋 SST 异常持续数周,并与持续的波列模式相关,导致美国东部阻塞和极端温度的发生率增加。极端干燥的土壤湿度条件持续到第 4 周,并伴有感热通量增加和潜热通量减少,这可能有助于维持上层反气旋。阻塞反气旋带来的晴朗天空条件进一步降低了土壤湿度,增加了极端高温天气的频率。这种巧妙的统计模型有可能帮助制定灌溉计划、作物规划和水库运行,并减轻极端高温事件的影响。
泵送热能存储 (PTES) 因其相对于其他电网规模电力存储技术具有多维优势而成为越来越有吸引力的研究领域。本文建立了一个模型,并用数字方式研究了基于氩气的布雷顿型 PTES 系统的性能。该模型用于优化系统的总工作输出和往返效率。热存储罐的纵横比和填料床分段操作已经改变,以评估它们对往返效率的影响。发现更长更薄的罐可以提高效率,热罐长度对系统性能的影响大于冷罐。发现分段操作中的“温度比”越大,往返效率越高,热存储出口工作流体温度越高,持续时间越短,性能越好。描述功率输出的关键特征被确定为最大功率区域的持续时间和“功率前沿”的陡度。为了最大限度地延长高功率区域的持续时间并减小功率锋面的宽度,使用了额外的潜热存储,然后使用等熵往复式压缩机/膨胀机结构评估其对往返效率的影响,预测效率高达 80%,接近理论预测的极限。