本报告包括 1973 年 10 月完成的合同主题的摘要和书目列表。主要主题包括:激光技术、强爆炸的影响、地球科学、粒子束和材料科学。有关其他感兴趣的项目的部分作为可选主题包括在内;有关地磁脉动的材料将在单独的报告中摘录。
SM-UART-04L 颗粒灰尘传感器专为需要测量细颗粒灰尘的各种空气质量应用而设计。应用包括用于住宅和轻工业监测和控制的空气质量计和空气净化器。光学设计利用激光技术,使客户能够实现出色的性能和平衡的可靠性。SM-UART-04L 是工业和消费应用的理想解决方案。
Seagate®Gen 6 LiDAR是一种高精度,高性能的120度FOV LIDAR单元,旨在下一代ADA和自动驾驶汽车应用。该设备基于1550nm激光技术,并且不包含用于高可靠性和自我对准光学元件的旋转活动元素,以易于制造。具有250m范围,低功率和小尺寸的设备旨在满足OEM规范,并易于集成到车辆中。
1. 宾夕法尼亚州立大学应用研究实验室,宾夕法尼亚州州立学院 2. 通用动力公司 NASSCO,加利福尼亚州圣地亚哥 3. 诺斯罗普·格鲁曼船舶系统公司,路易斯安那州新奥尔良 摘要 日趋成熟的高功率固体激光技术正激发人们对船舶制造活动中激光-GMA 混合焊接的兴趣。与传统连接技术相比,激光-GMA 混合焊接已证明能够减少薄钢对接焊缝的变形并提高管道焊缝的生产率,从而提高经济性。本文讨论了激光-GMA 混合焊接的潜在优势、解决变形和生产率的实验结果,并概述了最近在船舶厂安装的混合管道焊接系统。 关键词:焊接;激光束焊接;混合焊接;焊接变形;管道焊接 简介 自从研究人员首次设想将传统焊接电弧与激光束结合成一种混合工艺(Steen and Eboo 1979, Steen 1980),至今已有 25 年的历史,但直到最近,商用激光技术才发展到激光-GMA 混合焊接开始在工业应用中占据一席之地的地步。与短短几年前相比,激光器现在在工业上更加耐用且节能。与传统的基于电弧的连接工艺相比,激光束焊接 (LBW) 具有相对较高的焊接速度和较高的穿透力。不幸的是,
摘要:由于开发了搅动的脉冲扩增技术,超快激光技术已从超快转移到了超强。超快激光技术,例如飞秒激光器和皮秒激光器,已迅速成为处理脆性和硬材料以及复杂的微型组件的灵活工具,这些工具被广泛用于医疗,航空航天,半导体应用等。但是,超快激光与脆性和硬材料之间相互作用的机制尚不清楚。同时,这些材料的超快激光处理仍然是一个挑战。此外,还需要开发使用超快激光器的高效和高精度制造。本综述着重于脆性和硬材料的超快激光处理的常见挑战和现状,例如基于镍的超合金,热屏障陶瓷,钻石,二氧化硅和碳化硅复合材料。首先,根据其带隙宽度,导热率和其他特征来区分不同的材料,以揭示在脆性和硬材料的超快激光处理过程中激光能量的吸收机制。其次,通过分析激光诱导的等离子体中的光子与电子和离子之间的相互作用以及与材料连续体的相互作用来研究激光能量转移和转化的机制。第三,讨论了关键参数与超快激光处理质量之间的关系。最后,详细探讨了复杂的三维微型组件的高效和高精度制造的方法。
几乎所有光 - 互动的基本原因是空间和时间上的原子运动。为了提供类似电影的动力学访问,我们将电子显微镜与AttoSond激光技术统一。以这种方式,我们将现代电子束的令人敬畏的空间分辨率与光线周期[1]提供的壮观时间分辨率相结合。选定的结果将报告在超材料内的电场[2-3],爱因斯坦 - de-haas对原子维度的影响[4],相变的反应路径[5]和自由电子Qubit态的形成[6]。通过颠覆性成像技术实现了许多科学和技术的突破,我们的4D电子显微镜可能在原子维度上发挥了轻度相互作用的作用。
您的个人资料: 完成大学物理学学习(理学硕士),成绩优于“良好”(德国标准)。 量子力学知识扎实 量子信息处理基础知识 成功参与上述项目的关键是对手头任务的高度兴趣、非凡的奉献精神和主动性。 愿意在物理学、计算机科学、数学和电气工程领域的跨学科团队中工作。 我们重视以下一个或多个领域的知识:实验量子光学、激光光谱和冷却、原子物理学、微波技术、激光技术、光学、真空技术、控制电子学或实时控制。 非常好的英语水平
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
2020年,商务部公布了自2018年起开始讨论的《目录》最终修订内容。与2008年的《目录》相比,2020年版删除了9项技术,增加了23项技术,并修改了其他21项技术的管制要点。此次修订反映了从国家安全角度对技术出口实施出口管制的政策方向。例如,限制技术类别包括3D打印、大型高速风洞、海上岛礁建设、火箭发动机轴承、无人机和激光技术。此次修订旨在加强对先进关键技术的出口管制,这与中国新《出口管制法》的要求和其他国际惯例相一致。