累积制造 (AM),即材料的逐步形成,最近已成为连续生产的一种选择。目前,包括重要的工程材料钢、铝和钛在内的多种金属材料可以重新用于具有不同截面的全厚材料。本综述文章描述了 AM 工艺、微观结构和材料性能之间的复杂关系。它解释了激光束熔化、电子束熔化和激光金属沉积的基础知识,并介绍了不同工艺的商用材料。然后,介绍了增材制造钢、铝和钛的典型微观结构。特别关注了 AM 特定的晶粒结构,这些结构是由复杂的热循环和高冷却速率产生的。增材制造从快速原型设计转变为快速制造应用。这不仅需要对工艺本身有深入的了解,还需要对工艺参数产生的微观结构以及材料截面有深入的了解。在众多可用技术中,只有一种工艺适合生产满足制造条件的金属层。本文详细研究了目前制造适用性最高的三种累积制造技术,即激光束熔化 (LBM)、电子束熔化 (EBM) 和射线源沉积 (LMD),其工艺、微观结构和颗粒之间的关系。累积制造重复使用的材料与使用传统系统重复使用的相同材料相比,通常具有截然不同的颗粒。
摘要:自动驾驶汽车(AVS)在很大程度上依靠LiDAR感知来了解环境的理解和导航。LIDAR强度提供了有关反射激光信号的有价值信息,并在增强AV的感知能力方面起着至关重要的作用。但是,由于环境中物体的材料特性不可用,并且激光束与环境之间的复杂相互作用,因此准确模拟激光雷达强度仍然是一个挑战。所提出的方法旨在通过将基于物理的模态纳入深度学习框架中来提高强度模拟的准确性。捕获激光束与物体之间相互作用的关键实体之一是入射角。在这项工作中,我们证明,将激光雷达的入射角作为单独的输入方式添加到深神经网络中可以显着增强结果。我们将这种新颖的输入方式整合到了两个突出的深度学习体系结构中:U-NET,一个卷积神经网络(CNN)和PIX2PIX,一种生成的对抗性网络(GAN)。我们研究了这两个体系结构的强度预测任务,并使用了Semantickitti和VoxelScape数据集进行实验。综合分析表明,这两种体系结构都从发射角中受益,作为附加输入。此外,Pix2Pix体系结构的表现优于U-NET,尤其是在合并入射角时。
皮秒激光超声波系统 (PLUS) 支持 (项目 79):学生将通过启动系统、对准激光束和运行基于 labview 的数据采集软件从 PLUS 系统获取数据。其他职责包括通过测量 RMS 噪声来提高信噪比,将此噪声与理论散粒噪声限制性能进行比较,识别额外噪声源,开发电路或实验技术以消除这些噪声源,开发运动控制软件和热波实验,这需要能够开发 Labview 例程。开发软件实验模型/模拟需要具有 C 和 C++ 编程经验。
摘要:我们对聚酰亚胺纤维上的CO 2激光诱导的电导率进行了激光参数研究。发现诱导的电导率主要发生在扫描线的中心,而不是在整个线宽度上均匀地发生。Microraman检查表明,电导率主要是由于激光照射线中心诱导的石墨烯结构的多层(4-5)的结果。线中心的石墨烯形态和纳米级纤维结构一起以薄壁多孔结构的形式出现。具有每单位长度和激光功率的能量剂量,这种电导率的表面修饰与激光脉冲频率无关,但取决于平均激光功率。可以通过在高功率水平上对激光束进行一次激光束的扫描来实现高电导率。为了达到高电导率,以低功率使用激光,但要以较慢的扫描速度或进行多次扫描来补偿它是有效或有效的。当10毫米扫描长度上的电阻从几百欧姆降低到30欧姆,当单位长度的能量剂量从0.16 j/mm增加到1.0 j/mm,即从5.0 w增加到5.0 w到24 w,在24 W上增加了3.44×10 w/cm 2 2 s cm 2 2 k. 16.54 w/cm的相应功率,一次通行证扫描。相比之下,以超过22.5 mm/s的速度以低于5 W的功率导致非导电开路。
我们使用Spintronic Thz发射器研究了局部THZ场的生成,以增强微米大小的成像的分辨率。远面成像,波长高于100 l m,将分辨率限制为该数量级。通过使用光学激光脉冲作为泵,可以将Thz Field Genert固定在激光束聚焦的区域。由于激光束聚焦而引起的生成的THZ梁的差异要求成像的物体在THZ场波长以下的距离处靠近生成位。我们根据自旋电流在COFEB/PT异质结构中通过FS-LASER脉冲产生THZ辐射,并通过商业低温种植-GAA(LT-GAAS)Auston Switches检测到它们。通过应用具有电动阶段的2D扫描技术来确定THZ辐射的空间分辨率,从而可以在子微米计范围内进行台阶尺寸。在近距离限制内,我们在千分尺尺度上在激光斑点大小的尺寸上实现空间分辨率。为此,在由300 nm SiO 2间隔层隔开的旋转发射器上蒸发了金测试模式。将这些结构相对于飞秒激光斑点(生成THZ辐射)允许测定。刀边方法在1 THz时产生的全宽半宽度梁直径为4:9 6 0:4 l m。在简单的玻璃基材上沉积自旋发射器异质结构的可能性使它们在许多成像应用中具有近距离成像的候选者。
作为政府资助的计划,旨在开发子孙后代的核电站所需的能力,我们开发了一种建模电力梁焊接过程的方法,包括预测残余压力。我们借鉴了我们先前对焊接建模的知识,以创建一种可以准确预测残余应力的方法,同时也可以在计算上有效。为了验证我们的方法,创建了许多电子束焊接和激光束焊接样品,然后应用了最先进的方法以测量这些样品中的残余应力。我们使用这些残留应力测量值来验证我们对电子束焊接样品模型的预测。
图像质量是 ARRILASER 最突出的特点。中间材料上具有 2.046 状态 M 密度以上的全动态范围,可以覆盖任何给定的对比度范围。由于线性平台和偏转镜在两个方向上产生完美的直线,因此可以实现完美的图像线性。图像的位置和大小可以任意调整。在 ARRILASER 中,完美形状的激光束被描绘在胶片上,没有任何眩光。所有三个激光器(红色/绿色/蓝色)都经过调整以匹配一个点。因此,整个图像的色彩融合得到了完美调整。
图像质量是 ARRILASER 最突出的特点。由于具有 2.046 状态 M 密度以上的全动态范围,中间材料可覆盖任何给定的对比度范围。由于线性平台和偏转镜在两个方向上产生完美的直线,因此可以实现完美的图像线性。图像的位置和大小可任意调整。在 ARRILASER 中,完美形状的激光束被描绘在胶片上,没有任何眩光。所有三个激光器(红/绿/蓝)都经过调整以匹配一个点。因此,整个图像的色彩融合得到了完美调整。
1 Wang Da-heng Center,海伦吉安格量子控制关键实验室,哈尔滨科学技术大学,哈尔滨150080,中国2个国家微观结构实验室,智能光学感应和操纵的主要实验室,以及工程和应用科学学院以及Nanjing University,Nanjing Univentes,Nanjing 210093,En. Del Bosque 115,Colonia Lomas del Campestre,37150León,Gto。 yqlu@nju.edu.cn†这些作者同样贡献。摘要:通过几何阶段与平面光学器件通过几何相位旋转轨道耦合(SOC)为塑造和控制近视结构光提供了有希望的平台。电流设备,从开创性的Q板到最近的J板,仅提供旋转依赖的波前调制,而无需振幅控制。然而,实现对近似SOC状态的所有空间维度的控制需要对相应的复杂振幅的自旋依赖性控制,这对于平面光学元件仍然具有挑战性。在这里,为了解决这个问题,我们提出了一种称为结构化几何相光栅的新型平面元件,该元件能够用于正交输入圆极化。通过使用微结构液晶光平取道,我们设计了一系列扁平式元素,并在实验上显示了它们在任意SOC对照方面的出色精度。该原理通过平坦的光学器件解锁了对副结构光的全场控制,为一般光子SOC态开发信息交换和处理单元提供了一种有希望的方法,以及用于高精度激光束塑形的高精度激光束的外部/腔内转换器。