我们报道了一种简便的顶平方形纳秒 (ns) 激光直写 (LDW) 烧蚀技术,在薄银膜基底上制备柔性透明电极的方形银蜂窝结构。方形银蜂窝结构具有表面光滑、边缘清晰、机械稳定性、与基底的强附着力以及良好的电阻和透明度。由于通过一步顶平方形纳秒 LDW 烧蚀银膜进行简便的冷加工,可以制备不同厚度的银网电极 (20 nm、50 nm、160 nm),这些电极具有光滑的金属蜂窝表面和优异的边缘清晰度。特别是,该策略能够制备高方形蜂窝面密度(烧蚀方形蜂窝占总面积的比例)的银网,从而显着提高透明度 (>85%),而不会显著牺牲电导率(<23.2 Ω sq−1 电阻单位)。因此,所提出的金属蜂窝结构显示出与聚萘二甲酸乙二酯(PEN)柔性基板的兼容性,适用于银基可穿戴电子设备,且电极上没有任何保护层。
简介:激光烧蚀元素同位素光谱仪系统 (LABEISS) 是一种面包板仪器,具有两种主要技术——激光诱导击穿光谱 (LIBS) 和激光烧蚀分子同位素光谱 (LAMIS)。此外,LABEISS 还能够将拉曼光谱、激光诱导荧光和被动反射作为支持技术。LIBS 已成为行星探索的主要技术,最著名的是 ChemCam 和 SuperCam 仪器,后者最近搭载在 NASA 的 Mars2020 毅力号探测器上 [1, 2, 3]。LIBS 是一种快速获取地质样品、土壤样品和表面清洁(使用重复激光烧蚀)中主要和次要元素分析结果的方法。与 LIBS 相比,LAMIS 基于分子发射的同位素位移(所谓的同位素异形体),该位移的时间延迟由激光烧蚀过程中等离子体和原子的结合时间定义 [4, 5]。LAMIS 已成为 LIBS 的一种有前途的补充技术,因为它可以表征目标的同位素特征,从而提供同位素区分。拉曼光谱 (RS) 发生在分子被激发源激发并通过分子键或晶格的振动、旋转或拉伸产生非弹性散射时。每个谱带对应于分子键激发波长的不同拉曼波数位移,可用于识别或“指纹识别”多种材料。
随着直接金属化和 HDI 的出现,通孔的长期可靠性和性能问题浮出水面。此外,用树脂涂层铜 2 型箔和标准 FR-4 与金属化技术(直接与传统化学镀铜)制造的通孔之间的关系可能会影响互连的可靠性。许多因素可能会影响整体通孔可靠性:(1)孔内电沉积铜的均匀性,(2)铜的总镀层厚度,(3)微孔定位焊盘上镀铜的厚度,(4)镀铜与互连的粘附性以及(5)可能干扰镀铜均匀沉积的任何其他因素。随后,人们对用树脂涂层铜 2 和 FR-4 制造的通孔的可靠性提出了质疑。人们对于石墨系统催化表面镀铜质量与标准化学镀铜的比较也产生了其他担忧。
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
相对于激光束。图 2a 描绘了 FLW 过程的图形表示。FLW 是一种串行制造技术,与光刻相比可能并不适合大规模生产。然而,它的速度和简单性使其成为至少在量子技术等快速发展领域中规模生产的有吸引力的选择。可以实现的折射率变化很小,因此设备不如硅或氮化硅等其他平台那么小型化。然而,FLW 因允许三维电路布局(图 2b-c)、与玻璃以外的各种材料兼容(促进复合设备的混合集成)以及与标准光纤的低损耗连接而脱颖而出。FLW 只是通过超短激光脉冲与透明材料的非线性相互作用实现的几种微加工工艺之一。另一个例子是飞秒激光烧蚀,它可以精确去除材料,从而形成三维微结构,如图 2a 所示的微沟槽。将飞秒激光烧蚀与激光烧蚀相结合,可以提高集成光子器件的性能,例如可编程光子集成电路 [5],它集成了波导、电可编程干涉仪和空心结构,从而实现了非常低的
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化
> 近地轨道空间碎片防撞激光网络概念研究 > S. Scharring 等人 > 2021 年国际高功率激光烧蚀研讨会 > 2021 年 4 月 15 日 DLR.de • 图表 8
许多研究表明,激光纹理化之后,新处理过的金属表面由于存在微/纳米结构而呈现亲水或超亲水状态[3–5]。当激光纹理化表面较长时间暴露在环境空气中时,可以观察到润湿性从超亲水性转变为超疏水性[5–10]。因此,激光纹理化的金属表面在环境条件下储存时可实现超疏水性。不同金属的转化时间不同。例如,经纳秒激光纹理化的铜或黄铜需要大约 11–14 天才能变为超疏水[11,12]。Jagdheesh 等人[13]报道,激光烧蚀铝的润湿性转化需要大约 40 天。而飞秒激光烧蚀不锈钢的润湿性变化比其他金属需要更长的时间(52–60 天)[14,15]。
●独立管理一个高度协作的研究项目,涉及海洋田间采样和分析。●通过16S RRNA分析和元基因组测序研究,用于研究丢失的城市水热系统生态学和功能的研究生物信息学工具。●应用了一系列培养方法,以从深海羽流样品以及大陆蛇纹石托管系统中培养微生物。●改编了分析管道,以使用共焦荧光成像,拉曼光谱镜检查和激光烧蚀ICP-MS进行共同注册的微栖息地共分析。 ●建立了新的实验室标准方法和协议,用于在不同的环境和样本类型上采用分析管道。
在这种方法中,他们将基础材料限制在舟皿内,并在炉子的中心点蒸发成载气。以前,使用蒸发或冷凝方法可以制备 Ag、Au、PbSO 4、CdS 和富勒烯纳米颗粒。使用管式炉合成 AgNPs 有几个缺点 [13]。为了达到一致的工作温度,传统管式炉需要消耗数百千瓦的能量,并需要数十分钟的预热时间。银纳米颗粒确实是用较少的金属块体溶液烧蚀制备的 [14]。因此,与其他常规方法相比,激光烧蚀在溶液中不发生化学反应的情况下生成金属胶体具有优势。因此,可以通过这种方法生产天然胶体,以期对类似的包装有益 [15]。