对于接受激光椎间盘切除术的椎间盘源性背痛或神经根病患者,证据包括观察性研究的系统评价。相关结局包括症状、功能结局和治疗相关发病率。虽然许多病例系列和非对照研究报告了激光椎间盘切除术后疼痛程度和功能有所改善,但缺乏精心设计和实施的对照试验限制了对报告数据的解释。证据不足以确定该技术是否改善了净健康结果。对于接受射频冷凝椎间盘核成形术的椎间盘源性背痛或神经根病患者,证据包括随机对照试验 (RCT)、系统评价以及前瞻性和回顾性非随机研究。相关结局包括症状、功能结局和治疗相关发病率。对于核成形术,除了几项非对照研究外,还有三项 RCT。这些 RCT 的局限性在于缺乏盲法、一项试验的控制条件不足、第二项试验的数据报告不足以及第三项试验的入组率低且提前终止研究。由于多种混杂因素可能导致结果偏差,现有证据不足以得出有关这些手术对健康结果影响的结论。需要进行高质量的随机试验,并进行充分的随访(至少一年),以控制选择偏差、安慰剂效应和腰痛自然病程的变化。证据不足以确定该技术是否能改善净健康结果。计费/编码/医生文档信息
激光能量(激光椎间盘切除术)或射频偶联(核成形术)描述/背景激光能(激光盘切除术)和辐射频(RF)共振成形术(核成形术)已被评估以减轻椎间盘的解压缩。在荧光镜指导下激光椎间盘切除术,将针或导管插入椎间盘核中,并通过其指向激光束以使组织蒸发。对于椎间盘核成形术,双极射频能量被指向椎间盘上浸泡组织。正在评估这些微创手术以治疗椎间盘痛。椎间盘底部疼痛盘状下腰痛是一种常见的多因素疼痛综合征,涉及腰痛而没有辐射症状的发现,并结合了放射学确认的退行性椎间盘疾病。典型的治疗包括对物理疗法和药物治疗的保守治疗,在更严重的情况下可能会进行手术减压。治疗典型治疗包括对物理疗法和药物管理的保守治疗,在更严重的情况下可能会进行手术减压。多年来,随着与椎间盘疾病相关的下腰痛的治疗,已经研究了多种微创技术。技术可以广泛分为旨在去除或烧毁盘材料的技术,从而对盘进行解压缩,以及旨在改变盘环的生物力学的技术。前一种类别包括葡萄球蛋白注射,自动经皮腰椎椎间盘切除术,激光椎间盘切除术,以及最近使用RF能量的椎间盘减压,被称为椎间盘核成形术。
b'我们表明,与激光散斑相关的质动力可以以类似于库仑散射的方式散射激光产生的等离子体中的电子。给出了实际碰撞率的解析表达式。电子散斑碰撞在高激光强度或 \xef\xac\x81lamentation 期间变得重要,\xef\xac\x80影响长脉冲和短脉冲激光强度范围。例如,我们 \xef\xac\x81 发现国家点火装置空腔激光重叠区域中的实际碰撞率预计将超过库仑碰撞率一个数量级,从而导致电子传输特性发生根本变化。在短脉冲激光-等离子体相互作用的高强度特性下( I \xe2\x89\xb3 10 17 Wcm \xe2\x88\x92 2 ),散射足够强,导致激光能量直接吸收,产生能量缩放为 E \xe2\x89\x88 1 . 44 I/ 10 18 Wcm \xe2\x88\x92 2 1 / 2 MeV 的热电子,接近实验观察到的结果。 PACS 数字: PACS 数字。'
添加剂制造(AM)由于直接制造设施,设计灵活性和有效的交货时间而在许多行业中越来越受欢迎。定向能量沉积(DED)是AM的变体,激光金属沉积(LMD)被视为DED过程,它使用激光作为热源来融化和沉积通过粉末形式的喷嘴喂食的原材料。本文提出了一项研究工作,研究了使用pH 13-8 mo不锈钢粉末沉积的激光金属形式。进行了实验工作,以产生S形的单珠壁,其主要过程参数影响能量密度。通过将能量密度的水平视为低,中和高,讨论了结果。很明显,低能密度的参数不会产生不当或不当的S形壁。但是,高能量密度参数产生相对良好的沉积壁,但是由于沉积过程中的热量积累,壁的几何形式并不稳定。在每个能量密度水平上都可以看到沉积墙上的球。当热能不足以熔化并从移动喷嘴中沉积粉末时,就会发生这种缺陷。
摘要:重要的是研究形成的hastelloy-X合金的激光粉末床融合(LPBF)的微观结构和质地演变,以通过调节Hastelloy-X形成过程参数的调节来建立过程,微结构和性能之间的紧密关系。在本文中,hastelloy-X合金的成分是用不同的激光能密度(也称为体积能密度VED)形成的。研究了Hastelloy-X的致密机理,并分析了缺陷的原因,例如毛孔和裂缝。使用电子反向散射技术研究了不同能量密度对晶粒尺寸,质地和方向的影响。结果表明,随着能量密度的增加,平均晶粒尺寸,原发性树突臂间距和低角度晶界的数量增加。同时,VED可以增强质地。随着能量密度的增加,质地强度会增加。在96 J·mm -3的VED处获得了最佳的机械性能。
铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD
仅贡献了全球粮食安全的最小改善。令人遗憾的是,目前,在政治上具有的监管障碍正在采用下一个基因组创新,基因组编辑,其含义也在本文中进行了讨论。从2005年到2015年,目睹了十年来全球粮食不安全的减少,但遗憾的是,该人随后发生了上升。为什么这样?原因归因于气候变异性,生物和非生物压力,缺乏获得创新技术的机会以及在决策过程中的政治干预。该评论强调了在监管机构批准中的政治干预如何对采用创新的采用,增强农作物品种的采用,从而限制粮食不安全经济中的粮食安全机会。
氟化氩 (ArF) 是目前波长最短的激光器,能够可靠地扩展到高增益惯性聚变所需的能量和功率。ArF 的深紫外光和提供比其他当代惯性约束聚变 (ICF) 激光驱动器更宽带宽的能力将大大提高激光目标耦合效率,并使驱动内爆的压力大大提高。我们的辐射流体动力学模拟表明,使用亚兆焦耳 ArF 驱动器可以获得大于 100 的增益。我们的激光动力学模拟表明,电子束泵浦 ArF 激光器的固有效率可以超过 16%,而效率第二高的氟化氪准分子激光器的固有效率约为 12%。我们预计,使用固态脉冲功率和高效电子束传输到激光气体(美国海军研究实验室的 Electra 设施已进行了演示),将 ArF 光传输到目标的“电插式”效率至少应达到 10%。这些优势可以推动开发尺寸适中、成本较低的聚变发电厂模块。这将彻底改变目前对惯性聚变能源过于昂贵和发电厂规模过大的看法。本文是讨论会议主题“高增益惯性聚变能源前景(第 1 部分)”的一部分。
截至2018年,在31个国家 /地区有451个核反应堆,目前正在建设另外59个反应堆。 所有这些核电站都有可以在周围地下水中测量的慢性trion释放。 在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。 每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。 虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。 即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。 因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。 新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。截至2018年,在31个国家 /地区有451个核反应堆,目前正在建设另外59个反应堆。所有这些核电站都有可以在周围地下水中测量的慢性trion释放。在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。 每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。 虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。 即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。 因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。 新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。