报道了在多铁绝缘体 Cu 2 OSeO 3 中发现了一种新型长寿命亚稳态 skyrmion 相,并用 Lorentz 透射电子显微镜对低于平衡 skyrmion 口袋的磁场进行了可视化。此相可通过用近红外飞秒激光脉冲非绝热激发样品来获得,而任何传统的场冷却协议都无法达到,这被称为隐藏相。根据光创造过程的强烈波长依赖性以及通过自旋动力学模拟,磁弹效应被确定为最可能的光创造机制。该效应导致磁自由能景观的瞬态改变,将平衡 skyrmion 口袋延伸到更低的磁场。对光诱导相的演变进行了超过 15 分钟的监测,未发现任何衰减。由于这样的时间比激光脉冲在材料中引起的任何瞬态效应的持续时间长得多,因此可以假设新发现的 skyrmion 状态在实际应用中是稳定的,从而为在超快时间尺度上按需控制磁状态的新方法开辟了新天地,并大幅减少了与下一代自旋电子器件相关的散热。
硅基量子发射器因其单光子发射特性和在长自旋相干时间的自旋光子界面中的潜力而成为大规模量子比特集成的候选者。在这里,我们展示了使用飞秒激光脉冲结合基于氢的缺陷激活和钝化在单中心水平上对选定的发光缺陷进行局部写入和擦除。通过在碳注入硅的热退火过程中选择合成气体(N 2 /H 2 ),我们可以选择形成一系列与氢和碳相关的量子发射器,包括T 和C i 中心,同时钝化更常见的G 中心。C i 中心是一种电信S波段发射器,具有良好的光学和自旋特性,由硅晶格中的单个间隙碳原子组成。密度泛函理论计算表明,在氢存在的情况下,C i 中心亮度提高了几个数量级。 Fs 激光脉冲局部影响量子发射器的氢钝化或活化,从而可编程形成选定的量子发射器。
高能量超快激光器和游离电子激光器的抽象快速进步使实验室中的极端物理条件成为可能,这为研究光与物质之间的相互作用奠定了基础,并探测超快动态过程。高时间分辨率是实现这些大规模设施价值的先决条件。在这里,我们提出了一种新方法,该方法有可能使大型科学设施的各个子系统都能很好地合作,并且通过将平衡的光学跨率(BOC)与近乎文件的干扰素征结合,可以极大地提高计时抖动的测量精度和同步精度。最初,我们将0.8 PS激光脉冲压缩到95 fs,这不仅将测量精度提高了3.6倍,而且还将BOC同步精度从8.3 FS root-Mean-square(RMS)提高到1.12 fs rms。随后,我们通过使用BOC进行预校正和接近实验室的干涉测量技术来成功补偿激光脉冲之间的相位漂移至189 AS RMS。此方法实现了具有AS级准确性的PS级激光器的定时抖动的测量和校正,并具有促进超快动力学检测和泵 - 探针实验的潜力。
摘要:激光诱导正向转移 (LIFT) 技术已用于打印具有微米级颗粒 (1-4 µ m) 的高粘度 (250 Pa · s) 商用银浆。使用单个 ps 激光脉冲转移的体积像素 (体素) 相互重叠以获得连续的金属线。然而,连续体素之间的干扰问题是获得具有良好形貌的线条之前必须解决的主要问题。讨论了激光脉冲能量、供体糊剂膜厚度和连续体素之间距离对单个体素和线条形貌的影响。由于糊剂的粘度高,打印事件后供体膜中的空隙仍然存在,并且它对下一个激光脉冲的物理传输机制产生负面影响。当两个激光脉冲在短距离发射时,根本不会发生传输。只有当脉冲之间的距离足够长以避免干扰,但又足够短以允许重叠(≈ 100 µ m)时,才有可能在单个步骤中打印连续的线条。最后,所获得的知识使得银线的打印速度达到高速(高达 60 m / s)。
对于工业应用而言,工艺总成本通常是限制超短脉冲激光系统广泛应用的因素。除此之外,产量是该技术成功实施的关键因素,产量不仅要求工艺优化,还与激光系统的平均功率成正比。因此,过去通常要求更高的平均功率。但如今,能够全天候运行的工业用超短脉冲激光系统提供高达 200 W 的平均功率,而研究开发则超过了 kW 级。例如在 2018 年,相干组合超快光纤激光器证明了其平均功率为 3.5 kW,脉冲持续时间为 430 fs,重复率为 80 MHz [5],最近这一值已被突破,达到 10.4 kW 的平均功率 [6],脉冲能量约为 130 µJ,脉冲持续时间更短,为 254 fs。使用盘式放大器可以在较低的重复频率下实现更高的脉冲能量,例如,在 [7] 中,对于脉冲持续时间为 1 ps 的脉冲,在重复频率为 2 kHz 时,脉冲能量为 97.5 mJ。使用 innoslab 技术 [8] 也可以实现高平均功率,早在 2010 年,就已证明了在重复频率为 20 MHz 和脉冲持续时间为 615 fs 时的平均功率为 1.1 kW [9],最近又证明了在重复频率为 500 kHz 时,脉冲持续时间为 30 fs 时的平均功率为 530 W [10]。因此,未来平均功率不足将不再是问题,而挑战在于如何通过保持高加工质量来解决这个问题,这将在以下章节中说明。
历史背景 • (1930) 探照灯 • (1960) 激光发明 – 提供:高准直性、纯度和光谱相干性(Δλ≈ 0.01 nm) • (1962) Fiocco & Smullin – 从月球反射激光束。研究大气浑浊层 • (1963) Ligda – Q 开关:实现短宽度(τ l)、高能量激光脉冲 – (Ep ≈ 1J,τ l ≈ 10ns,PRF ≈ 10Hz) • (1973) 半导体激光器 (GaAs) – 激光二极管阵列。峰值能量 (Ep) ↓ 和 PRF ↑ 之间的权衡
亮点 - ASTROlas 特点和设计参数:• 抗辐射以及紧凑坚固的机械设计• 用于数据处理的单个 FPGA• 针对激光检测优化的广角镜头(>100° FoV)• 四个光谱通道,范围为 0.4...1.7µm:- 用于激光点成像的专用镜头- 每个通道的带宽和中心波长均可调整• 激光脉冲检测能力,区分脉冲和恒定激光束• 激光功率密度测定(辐射测量)• 2D 图像和检测到的激光束的叠加
这项工作研究了基于脉冲的变分量子算法(VQA),旨在通过结合经典和量子硬件来确定量子机械系统的基态。与更标准的基于栅极的方法相反,基于脉冲的方法旨在直接优化与量子器相互作用的激光脉冲,而不是使用一些基于参数化的门电路。使用最佳控制的数学形式主义,这些激光脉冲得到了优化。此方法已在量子计算中使用,以设计量子栅极的脉冲,但直到最近才提出了在VQA中进行完全优化[1,2]。基于脉冲的方法比基于门的方法具有多个优点,例如状态准备,更简单的实现以及在状态空间中移动的自由度[3]。基于这些思想,我们介绍了采用基于伴随的最佳控制技术的变异量子算法的开发。此方法可以量身定制并应用于中性原子量子组合体中。基于脉冲的变分量子最佳控制能够近似于化学精度的简单分子的分子基态。此外,它能够以量子评估总数为基于门的变异量子质量或均匀表现。总进化时间t和控制汉密尔顿H C的形式是收敛行为与基态能量的重要因素,既对量子速度极限和系统的可控性都有影响。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,对 180 Ta 至 175 Ta 同位素记录产量的轫致辐射谱进行了表征。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并将聚焦激光能量转换为高能轫致辐射,转换效率达到创纪录的 2%。