薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
动物是如何体验大脑操控的?光遗传学使我们能够选择性地操控和探究健康和疾病状态下大脑功能的神经回路。然而,对于小鼠是否能够检测和学习来自广泛大脑区域的任意光遗传学扰动以指导行为,我们知之甚少。为了解决这个问题,小鼠被训练报告光遗传学大脑扰动以获得奖励和避免惩罚。在这里,我们发现小鼠可以感知光遗传学操控,无论扰动的大脑区域、奖励效应或谷氨酸能、GABA 能和多巴胺能细胞类型的刺激如何。我们将这种现象命名为视感受,即一种由扰动大脑内部产生的可感知信号,就像内感受一样。利用视感受,小鼠可以学会根据激光频率执行两组不同的指令。重要的是,视感受可以通过激活或沉默单个细胞类型来发生。此外,刺激一只老鼠的两个脑区发现,一个脑区引起的视感知不一定会转移到另一个之前没有受到刺激的区域,这表明每个部位都会产生不同的感觉。学习后,它们可以模糊地使用来自两个脑区的随机交错扰动来指导行为。总的来说,我们的研究结果表明,老鼠的大脑可以“监控”自身活动的扰动,尽管是间接的,可能是通过内感受或作为一种辨别性刺激,这为向大脑引入信息和控制脑机接口开辟了一条新途径。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
实验物理学的科学进步不可避免地依赖于基础技术的不断进步。激光技术可以实现受控的相干和耗散原子光相互作用,而微光学技术则可以实现标准光学无法实现的多功能光学系统。本论文报告了这两项技术的重要进展,目标应用范围从里德堡态介导的量子模拟和光镊阵列中单个原子的计算到高电荷离子的高分辨率光谱。报告了激光技术的广泛进展:通过引入机械可调透镜支架,外腔二极管激光系统的长期稳定性和可维护性得到显著改善。开发了基于类似透镜支架的锥形放大器模块。二极管激光系统由数字控制器补充,用于稳定激光频率和强度。控制器提供高达 1.25 MHz 的带宽和由商业 STEMlab 平台设定的噪声性能。此外,还开发了针对强度稳定和 Pound-Drever-Hall 频率稳定进行优化的散粒噪声受限光电探测器以及用于 MHz 范围拍音的光纤探测器。通过分析用于波长为 780 nm 的 85 Rb 激光冷却的激光系统的性能,证明了所提出技术的能力。参考激光系统稳定到由调制传输光谱提供的光谱参考。分析该光谱方案以发现高调制指数下的最佳操作。使用紧凑且经济高效的模块产生合适的信号。实现了一种基于光学锁相环的激光偏移频率稳定方案。来自参考激光系统的所有频率锁定均提供 60 kHz(FWHM)的 Lorentzian 线宽以及 10 天内 130 kHz 峰峰值的长期稳定性。基于声光调制器与数字控制器相结合的强度稳定允许在微秒时间尺度上进行实时强度控制,并辅以响应时间为 150 纳秒的采样保持功能。对激光系统的光谱特性提出了很高的要求,以实现量子态的相干激发。在本论文中,通过引入一种用于二极管激光器的新型电流调制技术来增强主动频率稳定的性能。实现了从 DC 到 100 MHz 的平坦响应和低于 90 ◦ 的相位滞后,最高可达 25 MHz,从而扩展了可用于激光频率稳定的带宽。将该技术与快速比例微分控制器相结合,实现了两个激光场,相对相位噪声为 42 mrad rms,用于驱动铷基态跃迁。通过双光子方案进行相干里德堡激发的激光系统通过从 960 nm 倍频提供 780 nm 和 480 nm 的光。从单模光纤获得的 480 nm 输出功率为 0.6 W。两个激光系统的频率都稳定在高精细度参考腔中,导致 960 nm 处的线宽为 1.02 kHz(FWHM)。数值模拟量化了有限线宽对里德堡拉比振荡相干性的影响。开发了一种类似于 480 nm 里德堡系统的激光系统,用于高电荷铋的光谱分析。先进的光学技术也是微光学镊子阵列的核心,它提供了前所未有的系统尺寸可扩展性。通过使用优化的透镜系统与自动评估程序相结合,演示了具有数千个点且阱腰小于 1 µm 的镊子阵列。使用增材制造工艺生产的微透镜阵列实现了类似的性能。微透镜设计针对制造工艺进行了优化。此外,还分析了由于抑制谐振光导致的偶极阱散射率,证明了使用锥形放大器系统生成偶极阱的可行性。
使用当今的激光技术。寻求Attsond激光脉冲是激光物理学研究的最前沿(1-3)。脉冲可能会引起Attoelectronics的发展,从而可以研究动力学并控制生物学,化学和固态物理学的电子过程,并以相同的方式导致Femtsecond Laser Technology导致FEMTEMETION(1)。另一方面,最先进的超强度激光器可以输送高达1 pw,脉冲持续时间从500 fs降至18 fs,在800 nm至1 m(4)。可以识别出通往Attsond脉冲的两条路径;与固态激光振荡器技术相关的第一个(5)将最短的激光脉冲的极限降低到近IR中的4.5 fs到可见域。在这些波长下,打破了Attosend阈值意味着产生亚周脉冲(6,7)。另一个路径是基于通过强烈的飞秒激光脉冲在稀有气体电离中产生的一些短波长竖琴的仔细组合(8),导致100-极端的紫外线脉冲(3)。产生更短的单周期的可能性,超强脉冲为新的未探索物理学开辟了道路,并可能产生超明显的attosecond脉冲(3)。超短脉冲产生和计算的当前方法已经按照传统材料的线性和非线性光学的限制(5)。超强激光的进一步发展必须基于相对论强度的非线性光学(能够处理高功率密度和热负荷的介质)(9)。一个例子是,Shvets等人最近引入了光学参数AM-PLIFIER(10)的等离子体。(11)。在本文中,我们提出了一种将现有最短的脉冲进一步缩短到超强单周期脉冲的方法。此方法基于血浆中激光脉冲经历的频率降档(或光子减速),因为与相对论质量非线性和激光唤醒场的合并自我相互作用(12)。光子频率降档伴随着总波动的保护,导致激光场矢量电位的强烈增强(13)。相对论自我关注还提供了峰值激光场的加法放大。使用三维(3D)和二维(2D)粒子中的粒子(PIC)仿真,我们发现该方法适用于脉冲宽度,激光频率,激光强度和血浆密度的广泛参数。该方法是一般且健壮的,因为可以调节等离子体密度以在较大的频率和脉冲持续时间内生成脉冲。尽管以前的作品(6,7)在产生单周期