n 型 Ge/SiGe 量子阱被认为是实现 Si 兼容 THz 激光器的有前途的平台。针对这一材料系统,我们开发了一个数值模型来描述子带间载流子动力学,该动力学在非对称耦合 Ge/SiGe 量子阱中脉冲光激发后恢复平衡。我们考虑了非弹性和弹性散射过程,并研究了不同的量子阱几何形状、掺杂密度和激发方式。在这个配置空间中,我们解开了对每个散射通道整体动力学的影响,并提供了子带间弛豫时间,发现相对于 III-V 基材料,由于相对于 III-V 化合物,电子-声子耦合较弱,因此其值较大。最后,该模型用于研究和优化第一和第二激发子带能级之间的粒子数反转,并评估其对晶格温度的依赖性,为指导即将进行的实验提供了可靠的理论框架。
摘要:自由基定向解离 (RDD) 是一种碎裂技术,其中通过选择性 213/266 nm 光解离碳 − 碘键产生的自由基被重新分离并碰撞活化。在之前的 RDD 实验中,碰撞活化是由离子阱碰撞诱导解离 (CID) 实现的。高能碰撞解离 (HCD) 与 CID 的不同之处在于离子的激发方式以及观察到的碎片的数量、类型或丰度。在本文中,我们探讨了 HCD 在 RDD 实验中的活化用途。尽管无论采用何种活化能,RDD-CID 都有利于由自由基定向途径(例如 a/z 离子和侧链损失)产生的碎片,但 RDD-HCD 光谱随活化能的变化而变化很大,较低的能量有利于 RDD,而较高的能量有利于由移动质子(b/y 离子)引导的裂解产生的产物。因此,RDD-HCD 可以根据提供的 HCD 能量提供更可调的碎片。重要的是,随着 HCD 能量的增加,自由基产物的丰度会降低,这证实了 RDD 通常通过较低能量屏障进行,而不是通过移动质子驱动的解离。因此,对于 RDD-HCD,b/y 离子在较高能量下占主导地位可以通过在初始或后续解离事件后不含自由基的碎片的更高存活率来解释。此外,这些结果证实了先前的猜测,即由于多次解离事件,HCD 光谱与 CID 光谱不同。关键词:碎片化、光解离、自由基定向解离、高能碰撞解离、碰撞诱导解离■ 简介
摘要:自由基导向解离(RDD)是一种脆弱的技术,其中通过选择性的213/266 nm光解离的碳 - 碘键被重新分离并碰撞激活。在先前的RDD实验中,通过离子陷阱碰撞诱导的解离(CID)实现碰撞激活。高能碰撞解离(HCD)与CID在离子的激发方式以及观察到的片段的数量,类型或丰度方面都不同。在本文中,我们探讨了HCD在RDD实验中激活的使用。虽然RDD-CID有利于从根本导向的途径(例如A/Z-ION和侧链损耗)产生的碎片,而不管使用的激活能量如何,RDD-HCD光谱差异很大,而较低的能量有利于RDD,而较高的能量则偏向于由移动蛋白(b/y-y)引起的较高能量的产品,而较高的能量有利于RDD,而较高的能量则偏爱。RDD-HCD基于所提供的HCD能提供了更可调的碎片化。重要的是,激进产物的丰度随着HCD能量的增加而降低,证实RDD通常相对于移动 - 普罗顿驱动的解离而通过较低的能源屏障进行。因此,可以通过在初始或随后的解离事件后不包含自由基的片段的较高生存能力来解释b/y型在较高能量的b/y敌人的优势。此外,这些结果证实了先前怀疑HCD光谱与由于多个解离事件引起的CID光谱不同。关键字:碎片,光解离,自由基导向解离,更高能量的碰撞解离,碰撞引起的解离■简介