这些材料已由美国银行研究所(Bank of America Institute)准备,仅出于一般信息目的提供给您。在这些材料参考银行数据的范围内,此类材料并非旨在反思或指示,也不应依靠美国银行的运营,财务状况或绩效结果。美国银行研究所是一个智囊团,致力于发现推动商业和社会向前发展的强大见解。利用来自银行和世界各地的数据和资源,该研究所提供了有关经济,可持续性和全球转型的重要原始观点。除非另有明确说明,否则此处表达的任何观点或意见仅是美国银行研究所和所列出的任何个人作者,并且不是BOFA全球研究部或美国银行公司的任何其他分支机构或其分支机构和其附属公司和/或子公司(美国银行)的产物。这些材料中的观点可能与美国银行全球研究部或美国银行其他部门或美国部门所表达的观点和意见有所不同。已从认为可靠的消息来源获得了信息,但美国银行并不保证其完整性或准确性。观点和估计构成了这些材料之日起的判断,并且可能会更改,恕不另行通知。该材料不构成任何人或代表美国银行或代表任何人购买或出售任何安全或金融工具或从事任何银行服务的要约或邀请。保留所有权利。本文所表达的观点不应被解释为任何特定客户的个人投资建议,也不旨在作为特定客户的特定证券,金融工具,策略或银行服务的建议。这些材料中的任何内容构成了投资,法律,会计或税收建议。版权所有2024美国银行公司。
-1分之一的儿童患有可诊断的精神障碍,但是可以在早期发现精神健康问题的因素。- 从出生开始时,婴儿可以表现出抑郁症的迹象,包括无法解决的哭泣,缓慢的生长和睡眠问题。- 幼儿心理健康和幼儿发展的相互联系并编织在一起。- 患有积极心理健康的父母比患心理健康障碍的父母能够建立健康的亲子关系。
2023立法机关还认识到泥炭地资源的重要性,拨款高达900万美元来获得保护地役权,并恢复并增强泥炭地和邻近土地,以实现气候弹性,适应性,适应性,碳序列,碳固执以及相关利益的目的。”作为响应,BWSR正在开发着一个针对泥炭地的边缘地役权,作为较宽的边缘湿地役权计划的子计划。BWSR和合作伙伴机构正在探索额外的联邦资金的机会,以恢复公共和私有的泥炭地。
基于这些特性,金属和金属合金被用作承重植入物。其中,钴铬合金、不锈钢、钛和钛合金被广泛用于多种生物医学应用。特别是,钛及其合金的弹性模量接近骨骼,密度低于钴铬合金和不锈钢。[2,3] 此外,与纯钛相比,钛合金具有更高的机械性能,使其特别适合用作骨科和创伤植入物。然而,钛和钛合金被认为是生物惰性材料,即它们不会与人体周围组织发生化学或生物反应。[4] 此外,涉及钛合金(即 Ti6Al4V 合金)的腐蚀现象会导致释放对人体有害的 Al 和 V 合金。为了促进植入物与现有人体骨组织的骨整合,从而优化装置的整合,在植入物表面生长涂层可能是一种合适的方法。尤其对于钛和钛合金,火花阳极氧化是一种合适的技术,可在基体上生长出牢固粘附的多孔陶瓷涂层,最大限度地减少可能导致骨溶解的剥落现象。在此背景下,已研究了多种策略来增强钛合金的生物活性,从而增强其骨整合。[5–7] 文献中有充分的证据表明,羟基磷灰石 (HA,Ca 10 (PO 4 ) 6 (OH) 2 ) 的存在可以增强外来生物材料的骨整合,因为它与硬组织和软组织具有很高的生物相容性。[8] 因此,诱导 HA 的结合或生长已被证明是提高材料生物活性的一种好策略。例如,这可以通过电化学转化涂层工艺(如火花阳极氧化)通过精确调整操作条件(形成电压、电解质浴成分等)来实现。 [3,9,10] 此外,Ti6Al4V 合金表面生长一层厚的阳极氧化层可以提高其耐腐蚀性能
摘要-随着新型机械的改进和发展,轻质、高强度、高硬度和耐高温材料已得到发展,可用于航空航天、医疗、汽车等不同领域。在硬质和金属基复合材料的加工中,过时的制造工艺正越来越多地被包括电火花加工 (EDM) 在内的更多非传统加工工艺所取代。本实验中指定的工件材料是 Inconel 925,考虑到其在工业应用中的广泛使用。当今世界,不锈钢占世界工业生产和消费的近一半。在本实验中,输入变量因素是电压、电流和脉冲时间。众所周知,田口方法可通过实验设计 (DOE) 生成 L9 正交输入变量阵列。因此,田口方法用于分析输出数据。考虑并检查了符合要求的参数对加工特性(例如材料去除率 (MRR) 和刀具磨损率 (TWR))的影响。在此我们重点分析基于控制因素和响应参数的最小 TWR 和最大 MRR。关键词:EDM、电火花加工、非常规制造工艺、TWR 和 MRR
社区主导的中型至大型虚拟发电厂 由社区资助、建设、拥有和运营一组 DER。社区所有的零售商管理电力销售,添加其他本地 DER(如住宅太阳能和电池),并在整个社区网络中提供点对点交易。它们通常是非营利性的,由社区资助,旨在满足当地需求,提供更便宜的能源和更低的排放。它们需要最低限度的客户群、由可再生能源项目(如太阳能或风电场)覆盖的基线社区电力负荷,并且与社区电池配合使用效果最佳。例如,古尔本社区能源 (CE4G) 是一家新南威尔士州合作社,拥有、控制、管理和运营一个占地 2.2 公顷的 1.8 兆瓦太阳能发电场。它以固定价格在固定期限(例如 5 年或 10 年)内向机构用户出售能源,这就是所谓的电力购买协议 (PPA)。如果电力项目产生的电力超过当地所需,销售可以仅限于当地人(包括合作社成员)或扩大。
本指南介绍了委员会和社区如何控制和共享能源生产。澳大利亚的电网过去完全依赖煤炭和天然气,但目前正以惊人的速度转向可再生能源。这些可再生能源被称为分布式能源 (DER),其规模可以小到家庭屋顶太阳能系统。DER 正在改变我们对生产和分配电力的看法。DER 不是从一个中心位置为所有用户供电的大型发电站,而是从网络的多个点获取和共享能源,从而提高弹性和可靠性。我们希望通过采取合作的方式来控制当地社区和委员会的能源生产和使用需求,从而帮助它们参与这一变革并推动变革。本指南旨在回答一个重要问题 - 如果社区内生产的电力可供社区使用,会怎样?为此,本指南:• 介绍能源共享社区的概念,• 概述技术、电力市场规则和法规,• 展示理事会和开发商如何鼓励本地发电和未来能源共享的机会。社区电力共享正在迅速发展,因此指南的在线版本包含更多最新信息,可在 www.landcom.com.au/creatingaspark 上找到
摘要 随着人们对高性能陶瓷氮化铝 (AlN) 的兴趣迅速增加,许多研究人员研究了对其进行加工的可能性。由于 AlN 被归类为难切削材料,使用辅助电极的电火花加工 (EDM) 工艺正在成为一种有效的加工方法。煤油作为介电流体,在工件表面形成连续的导电碳层以诱导和维持放电方面起着重要作用。大多数以前的方法使用管状电极将介电流体稳定地输送通过其中心孔。然而,在微细电火花加工的情况下,非常小的电极直径使得难以在电极上制造通孔,并且非常窄的间隙会阻止介电流体的流动。为了克服微细电火花加工中介质液流动问题,本研究介绍了两种促进流动的方法:一是采用D形固体电极获得较宽的非对称流道,二是采用O形固体电极加石墨粉混合煤油(GPMK)在相对较宽的放电间隙下流动。流动模拟结果表明两种方法均能促进煤油流动,实验结果也显示出类似的结果。当采用D形截面时,材料去除率增加,但刀具磨损增加。与传统方法相比,对于GPMK,金属去除率提高了64%,相对磨损率降低了73%。通过电压调度,在不牺牲可加工性的前提下,解决了采用O形固体电极GPMK配置进行深孔钻削时出现的精度下降问题。
目的。[1-3]此外,等离子体在包括太空推进和生物医学技术在内的许多领域都起着重要作用。[4-6]阴极管和等离子体的一代需要外部电源设备,但是不幸的是,由于其重量较重,而且体积较大,因此该设备无法便携。因此,高压应用在没有电力供应的太空,战场和偏远地区等严酷的环境中存在严重限制。基于Triboelectrification和静电诱导的工作机制的Triboelectric纳米发育仪(TENGS)[7-11]可以在我们的圆形或人类运动中的机械运动中产生电力,而无需外部电源。[12–16]到目前为止,Teng产生的功率已被用作可植入的医疗设备,发光二极管,液晶显示器,传感器和低功耗电子设备的能源。[11,17–20]考虑到自动高压和便携性,Teng可以被视为高压应用的理想驾驶源。在这项工作中,我们提出了一个基于锯齿的电极的Teng(SE-TENG),该Teng(SE-Teng)基于火花放电来产生超高功率输出,以直接驱动高压操作设备。接触两种不同的摩擦材料,然后
