硅胶已被广泛用作食品,药物和其他各种目的的干衣机。硅胶基本上是一种安全的材料,但是由于其水平性质,硅胶很容易被危险材料污染。除此之外,硅胶不能自然地自然分解,因此使用大量硅胶会导致大量的硅胶废料。因此,正在努力寻找替换材料,其中一种是使用稻壳灰很容易自然分解的煤灰。这项研究旨在测试稻壳灰作为硅胶的替代品。测试在非编织土工织物袋(SG-N)中使用了商业硅胶(SG),硅凝胶和非织造土工织物袋(AS-N)中的稻壳灰。在这项研究中,将AS-N与SG和SG-N进行了比较。 对15克的重量进行了180分钟的水蒸气吸收测试。 将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。 用湿度计测量每个罐子的相对湿度。 在整个测试过程中,罐子盖一直关闭。 结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。 使用AVRAMI方程进行建模用于推断吸收结果。 研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。 因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。在这项研究中,将AS-N与SG和SG-N进行了比较。对15克的重量进行了180分钟的水蒸气吸收测试。将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。用湿度计测量每个罐子的相对湿度。在整个测试过程中,罐子盖一直关闭。结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。使用AVRAMI方程进行建模用于推断吸收结果。研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。
• 第 6 中队、第 1 骑兵团、第 1 装甲旅战斗队 (ABCT)、第 1 装甲师:PFC Tayvion Jones、SGT Ryan Austin、SPC Dade Horton、SPC Wyatt Carson、SPC Kadin Graham 和 SSG Rebiejo Zackery。• 第 1 中队、第 4 骑兵团、第 1 装甲旅战斗队、第 1 骑兵师:SSG Levi Cowart、SPC Carlin Coomey、SPC Patricio Alduvin、SPC Michael Stitely、PFC Aiden Harris 和 PFC Aiden Hernley。 • 第 1 营、第 5 骑兵团、第 2 ABCT、第 1 骑兵师:SSG Tyler Mehl、SGT Eric Szudy、SPC Gregory Harrington、SPC James Saul、PFC Itler Mbula 和 PFC Alexander Erickson。• 第 4 中队、第 3 美国骑兵团、第 1 骑兵师:SSG Noah Kokkeler、SGT Alberto Torres、SPC Corey Catron、PFC Cameron Waites、PV2 Iaza Ingoglia 和 PV2 Braxton Flicker。 • 第 8 中队、第 1 骑兵团、第 2 斯瑞克旅战斗队 (SBCT)、第 2 步兵师:SSG Nicolas Vallez、SGT Matthew Keylich、SPC Rasheed Wallace、PFC Eric Moldenhauer、PFC Skylur Hester 和 PFC Carson Ringler。 • 第 4 中队、第 2 骑兵团、第 2 CR、美国陆军欧洲和非洲 (USAEUR-AF):SSG Ryan Cardiff、SGT John Wendt、SPC Brian Riverang、SPC Ryan Rocha、SPC Benjamin Walker 和 PFC David Doucette。 • 第 6 中队、第 8 骑兵团、第 2 ABCT、第 3 步兵师:SGT Charles Johnson、SGT Casey Trull、SPC Jose Cota、SPC Cameron Palmer、PFC Ethan Conley 和 PFC Jordan Calfy。 • 第 2 中队、第 1 骑兵团、第 1 SBCT、第 4 步兵师:SSG Steven Bouton、SGT Liam Mackrell、SPC Travis Pembridge、SPC Christopher Cancel、SPC Christian Suchite 和 PV2 Darren Manriquez。 • 第 1 中队、第 14 骑兵团、第 1 SBCT、第 7 步兵师:SSG Wyatt Lilienthal、SGT Steven Reynoso、SPC Rafael Lopez、SPC Byron Kyger、SPC Guillermo Carrera 和 SPC Matthew Kiddle。 • 第 3 中队、第 89 骑兵团、第 3 IBCT、第 10 山地师:SSG Shawn Deen、SGT Joshua Valesco、SPC Tyler Deaton、SPC Adrian Fuentez、PFC Walter Moreno 和 PFC Henry Swearingen。 • 第 2 中队、第 11 装甲骑兵团 (ACR)、第 11 ACR、国家训练中心:SSG Hendryx- Steven Solis、SGT Gyres Fouelefack、SPC Dalton Langer、SPC John Pacheco、SPC Jonathan Whiteside 和 SPC Matthew Runk。• 第 5 中队、第 1 骑兵团、第 1 IBCT、第 11 空降师:SSG Wayne Schultz、SGT Seth Marshall、PFC Cameron Patrick、PFC Damian Tapia、PFC Aiden Wood 和 PV2 Austin Heath。 • 第 2 中队、第 14 骑兵团、第 2 步兵战斗旅、第 25 步兵师:SSG Jacob Lahti、SGT Michael Green、SPC Mason Golden、PFC Sebastien Barragan、PFC Diego Cade 和 PFC Damien Deleon。• 第 1 中队、第 73 骑兵团、第 2 步兵战斗旅、第 82 空降师:SSG Eric Nevadunsky、SGT Julian Glasser、SPC Mario Flamenco、SPC Andrew Rutherford、SPC Santos Portillo 和 SPC Parker Holland。 • 第 1 中队、第 33 骑兵团、第 3 旅战斗队、第 3 IBCT、第 101 空降师:SSG Joseph Rosas、SGT Connor Pelletier、SPC Michael Joaquin、SPC Henry Wasserman、PFC Aidan Nelson 和 PFC Joseph Smith。• 爱尔兰第 1 装甲骑兵中队:LT Alex McNamara,SGT Kevin Conlon、CPL Anthony Sheehy、TPR Gabriel Garbencius、TPR Declan Behan 和 TPR Oisin Duffy。• 美国欧洲陆军空军第 1 中队、第 91 骑兵团、第 173 空降旅:SSG Graham Brown、SGT Jake Bullock、SPC Nicholas DuBois、SPC Anthony Valdez、PFC Jonathan Wilkey 和 PV2 Tyler Solaita。
前往 Stewart-Watson 球场/颁奖典礼 - Marshall 礼堂 (BLDG 4) 的路线 活动日期/时间: • 2024 年 5 月 3 日 (0800-0900) • 2024 年 5 月 3 日 (1000-1300) • 通过 ACP #3 进入 FT Moore, GA • 继续直行进入 Lindsey Creek Parkway 并入 Colonel Puckett PKWY • 在 Edwards 街右转 • 在 Eckel 街左转 • 在 Chesney 街右转 • 按照指定人员的指示停车 • 颁奖典礼地点 - Marshall 礼堂
前往 Stewart-Watson 球场/颁奖典礼 - Marshall 礼堂 (BLDG 4) 的路线 活动日期/时间: • 2024 年 5 月 3 日 (0800-0900) • 2024 年 5 月 3 日 (1000-1300) • 通过 ACP #3 进入 FT Moore, GA • 继续直行进入 Lindsey Creek Parkway 并入 Colonel Puckett PKWY • 在 Edwards 街右转 • 在 Eckel 街左转 • 在 Chesney 街右转 • 按照指定人员的指示停车 • 颁奖典礼地点 - Marshall 礼堂
2021 团队 ID 学院/大学名称 类别 团队名称 火箭名称 国家 1 AGH 科技大学 10k - SRAD - 混合/液体及其他 AGH 空间系统 Skylark 波兰 2 安卡拉大学 10k - COTS - 所有推进类型 无 The Future 土耳其 3 塞萨洛尼基亚里士多德大学 10k - COTS - 所有推进类型 亚里士多德空间与航空团队 (ASAT) Selene 希腊 4 亚利桑那州立大学,坦佩 10k - COTS - 所有推进类型 SEDS-ASU 火箭部门 Dust Devil 美国 5 奥本大学 10k - COTS - 所有推进类型 奥本大学火箭协会 Project Panoptes 美国 6 BITS Pilani,海得拉巴校区 10k - COTS - 所有推进类型 SEDS BPHC Apeiron II 印度 7 波士顿大学 10k - COTS - 所有推进类型 波士顿大学火箭推进组BURPG IREC 团队 美国 8 杨百翰大学 10k - COTS - 所有推进类型 BYU 火箭协会 BYU 高功率火箭队 美国
在经典视图中,旋转配对发生在化学键中的两个电子之间,其中粘合相互作用弥补了静电排斥的惩罚。是否可以在分子实体内两个非键值电子之间发生旋转配对是一个谜。在分子尺度上揭示了这种难以捉摸的自旋纠缠(即在两个空间隔离的旋转之间配对),这是一个长期的挑战。Clar的Goblet由Erich Clar在1972年提出,提供了一个理想的模型来验证这种不寻常的特性。在这里,我们报告了Clar的杯状的溶液相合成以及对其自旋特性的实验性阐明。磁性研究表明,两个旋转的平均距离为8.7Å,在空间上隔离,抗磁磁性在基态耦合,ΔES-T为∆ E S-T为–0.29 kcal/mol。我们的结果提供了Clar的杯状旋转纠缠的直接证据,并可能激发量子信息技术相关分子旋转的设计。
执行摘要 • 陆军于 2012 年 7 月 30 日至 8 月 17 日在加利福尼亚州爱德华兹空军基地和加利福尼亚州欧文堡国家训练中心 (NTC) 进行了灰鹰 IOT&E。• 陆军根据 DOT&E 批准的测试和评估总体规划和测试计划进行了 IOT&E。• DOT&E 正在完成超低速率初始生产 (BLRIP) 报告,支持计划于 2013 年 4 月进行的灰鹰全速率生产决定。在该报告中,DOT&E 得出结论,配备灰鹰的部队能够有效操作 MQ-1C 系统,并有可能为作战部队提供有效的支持,但陆军需要继续开发战术、技术和程序;培训;以及将这种能力有效整合到作战行动中所需的理论。灰鹰系统在操作上是合适的。灰鹰通过为公司移动期间运输地面控制站的车辆驾驶室提供装甲能力来满足其机组人员保护生存能力要求。灰鹰飞机在中高威胁环境中无法生存。
Wood Environment & Infrastructure Solutions, Inc. (Wood) 代表佐治亚电力公司 (GPC) 为米切尔工厂的煤炭燃烧残余物 (CCR) 地面蓄水池 (灰池) 制定了此关闭计划。米切尔工厂在 2015 年 10 月 19 日(联邦 CCR 规则 40 CFR 第 257 部分生效日期)之前停止发电,因此,米切尔工厂的三个 (3) 个灰池不受联邦 CCR 规则的约束。此关闭计划满足佐治亚环境保护部 (GA EPD) 固体废物规则 391-3-4-.10 对煤炭燃烧残余物管理的要求(即州 CCR 规则)。此关闭计划中包含的信息将用于协助 GPC 关闭位于佐治亚州奥尔巴尼的灰池 A、灰池 1 和灰池 2,这些灰池均属于 GPC 所有。灰池 1 和 2 符合“NPDES-CCR 地面蓄水池”的定义,受州 CCR 规则 391-3-4-.10(9)(c)7 的约束。灰池 1 和 2 在 2015 年 10 月 19 日或之后未收到 CCR,两个地面蓄水池仍含有 CCR 和液体,并且都位于已在 2015 年 10 月 19 日之前停止发电的电力公司。灰池 A 符合“脱水地面蓄水池”的定义,因此受州 CCR 规则 391-3-4-.10(9)(c)8 的约束。灰池 A 在 2015 年 10 月 19 日或之后不再收到 CCR 并且不含液体。灰池 A 是米切尔工厂的初始灰池,于 1962 年停止使用,并被几英尺厚的土壤填充物覆盖。自那时起,该地区就被用于发电和输电结构。底层 CCR 用作地基材料、结构填料,在联邦和州 CCR 规则颁布之前被视为过去的有益用途。