• 先进的密封技术可实现紧密关闭并延长使用寿命。 • 高调节比可处理极端流速。 • 特制阀笼在初始操作期间提供低流量气蚀保护,并在压力上升时提供必要的流量。 • 可选阀内件允许通过 19 毫米 (0.75 英寸) 的颗粒。 • 单阀解决方案:在低流量、高压降启动期间提供防气蚀保护,在低压降、满载条件下提供不受限制的高流量。 • 双阀解决方案:提供专用的启动阀来处理气蚀条件,并联更大的标准阀内件阀来处理满载条件。 • 气动活塞执行器提供高精度步进定位和稳定的阀门响应。
摘要简介:先前的研究表明,手术后的认知灵活性与慢性疼痛的发展之间存在关联。尚不清楚慢性疼痛患者是否可以提高认知灵活性。目标:这项研究测试了神经认知训练计划是否会改善慢性疼痛患者的认知灵活性和疼痛。方法:我们进行了一项单中心,前瞻性,随机研究,研究了慢性疼痛患者的5周每日神经认知训练。参与者(n 5 145)像往常一样随机地进行神经认知培训或护理,并在基线,治疗后和3个月完成评估。治疗组被要求每天花35分钟完成一项计划,其中包含有关认知灵活性,记忆,注意力和速度的任务。主要结果是神经认知性能测试(NCPT)的性能。次要结果包括疼痛干扰和严重程度的水平。结果:在5周时,与对照组相比,治疗组在NCPT上显示出更大的改善(D 5.37)。效应大小在3个月时较小(D 5 0.18)。治疗组报告5周(D 5.16)和3个月(D 5 0.39)的疼痛严重程度较低,但疼痛干扰仅在3个月时较低(D 5 0.20)。结论:结果表明,使用神经认知训练来改变慢性疼痛患者的认知灵活性可能会改善疼痛严重程度。这项研究提供了效应尺寸估计值,以为随机对照试验的样本量计算提供信息,以测试神经认知干预措施预防和治疗慢性疼痛的有效性。
为了管理灵活性服务,ENEL X最先进的网络操作中心(“ NOC”)于2011年在都柏林的“硅码头”建立为我们的高级网格监控中心。它是需求响应服务的真正控制中心。这是所有能源调度都均经过行动,监控和管理的地方。通过NOC,我们运营着全球最大的灵活能源资产投资组合,以减少全球碳排放并促进我们运营的所有国家 /地区的国家电网稳定性。我们目前在18个国家 /地区管理9.4 GW*需求响应,并在全球范围内从15,000个企业网站流式传输数据。NOC管理的功率负载分布在75个以上的需求响应计划中,这些响应计划在动态和监管方面差异很大。
在欧盟战略文件中越来越多地将灵活性视为能源政策和市场设计的中心支柱。欧盟电力市场设计改革将灵活性置于其核心,而Letta和Draghi报告则强调了其在竞争力和市场一体化中的作用。LETTA报告强调了互连性,以提高灵活性,主张屏障去除和有效的互连能力利用。Draghi报告强调需要对灵活性解决方案,更强大的位置信号和协调能力机制进行更多投资。此外,欧盟委员会的竞争力指南针概述了激励工业需求灵活性并优先考虑对能源基础设施的投资的重要性。最近在欧盟级别采取了几项特定的政策计划,包括按需求端灵活性进行新的网络代码和对灵活性需求的要求评估。清洁工业交易认为灵活性对于整合脱碳能源至关重要。
4数字化我们的净零能源系统:战略和行动计划| Gov.uk 5能源部长埃德·米利班德(Ed Miliband)列出了他的优先事项| Gov.uk 6灵活性可以定义为智能,网格连接的资产以响应外部信号调节其操作的能力。此信号反映了特定能源系统参与者的需求,并定义了正在寻求的灵活性服务。7碳信托基金和帝国学院伦敦估计,仅部署需求方灵活性就将节省约45亿英镑的年度系统成本到2050年 - 主要发现 - 英国的灵活性|碳信托基金(第106)8个多年策略设定了Otgem提供清洁,负担得起和安全的能源系统的愿景| Ofgem
向电动汽车(EV)的过渡正在彻底改变公共交通的景观,提供了传统化石燃料动力的公共汽车和火车的清洁工,更可持续的替代品。该项目旨在以很高的成熟度开发一种有效而有效的工具,以使各种电动汽车(汽车,卡车,公共汽车…)之间的充电站之间有积极的交互,这使它们成为了需求响应服务的主要来源,以优化罗马的分布网格操作。飞行员还将利用ARETI的电动性实验室“ Areti Smart Park”,该实验室配备了RES生成,存储和高级控制系统,用于ARETI的EV机队,以测试特定的智能电荷和V2G技术。
• 负载转移建模为虚拟存储。例如,如果商业客户预先冷却其建筑物以避免在高负荷时使用空调系统,那么这不会降低一天中的总系统需求。这些技术充当虚拟存储,因为与物理电池一样,它们不会(除了损耗)导致总 MWh 消耗 - 它们反而会将其转移到更经济的时期。本研究假设,当“充电”和“放电”期间的电力批发价格存在足够差异时,它们会做出反应。
摘要:中华人民共和国的脱碳目标雄心勃勃。实现这一目标有赖于大规模部署风能和太阳能等可变可再生能源 (VRES)。VRES 的高渗透率可能导致电网平衡问题,这可以通过与储能相结合(例如安装额外的电力储存)来增加系统的转移灵活性容量来弥补。抽水蓄能 (PHS) 是全球范围内最普及的电力储存技术,也是唯一完全成熟的长期电力储存解决方案。中国已经拥有全球最高的 PHS 安装容量,并计划在 2030 年前大幅增加。本研究基于国际水电协会“抽水蓄能跟踪工具”的数据,探讨了中国现有和未来 PHS 机组的技术改进潜力。采用先进的 PHS 解决方案的目标使中国能够更好地应对平衡 VRES 生产的任务。通过五种不同的干预可能性(此处称为情景)评估了采用先进 PHS 解决方案的潜力。这些情景考虑改造部分运行中的抽水蓄能电站 (PSP) 机组并重新设计已经规划的未来装置。因此,考虑到所有主要的技术和授权流程限制,在高潜力情景下,预计在 2035 年前投入使用的 132 GW 机组中,4.0%(5.2 GW)可以额外采用先进的 PHS。同时,在中潜力和低潜力情景下,配额分别可以达到 11.1%(14.6 GW)和 26.2%(34.5 GW)。此外,还制定了政策建议,以促进、推动和支持采用这些先进的 PHS 解决方案。
AL 阿尔巴尼亚 BA 波斯尼亚和黑塞哥维那 CACM 容量分配和拥塞管理 CAES 压缩空气储能 CAPEX 资本支出 CCGT 联合循环燃气轮机 CESEC 中欧和东南欧能源连通性 CO 2 二氧化碳 CP 缔约方 DR 需求响应 DSO 配电系统运营商 ECRB 能源共同体监管委员会 EnC 能源共同体 EU 欧盟 EV 电动汽车 GE 格鲁吉亚 ICT 信息和通信技术 mFFR 手动频率恢复储备 MD 摩尔多瓦 ME 黑山 MK 北马其顿 MS 成员国 NEMO 指定电力市场运营商 NTC 净传输容量 O&M 运营和维护 OCGT 开式循环燃气轮机 PHS 抽水蓄能 RES 可再生能源 RS 塞尔维亚 T&D 输电和配电 TRL 技术就绪水平 TSO 输电系统运营商 UA 乌克兰 vRES 可变可再生能源 XK 科索沃* 1